Advertisement

Mammalian Photoperiodism

  • Michael R. Gorman
  • Bruce D. Goldman
  • Irving Zucker
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 12)

Abstract

Many organisms have evolved physiologic and behavioral adaptations that are presumed to increase reproductive fitness in highly seasonal environments. This review will focus on mammals, the group in which perhaps the most progress has been made in understanding mechanisms of seasonal adjustments at the neuroendocrine level. Seasonal modulation in a typical mammal may involve several traits, including reproductive capacity and related behaviors, increases and decreases in energy storage, and changes in pelage density. Food availability, precipitation, and ambient temperature vary seasonally in a more or less predictable fashion, and are potential environmental zeitgebers. Day length (DL) is, however, the most noise free and probably the most frequently used cue for phasing seasonal responses among mammals in mid and higher latitudes. This use of DL is termed photoperiodism and should be distinguished from the use of photic cues for the entrainment of circadian rhythms. Several review articles summarize recent progress in understanding mammalian photoperiodism (Bartness & Goldman, 1989; Goldman & Elliott, 1988; Goldman & Nelson, 1993; Karsch et al., 1984; Nelson, Badura, & Goldman, 1990). A recapitulation of the extensive corpus of findings is beyond our present scope; instead, we selectively review a few extensively studied model systems. We emphasize ways in which the natural progression of DLs in nature provides information used by animals to achieve seasonally appropriate adjustments. Our emphasis is on species, e.g., hamsters, mice, and voles, in which seasonal transitions do not recur spontaneously in the absence of seasonal changes in DL. These Type I rhythms (Zucker,Lee, & Dark, 1991) are not fully endogenous, and their recurrence in mammals is contingent on seasonal variations in DL and associated changes in the pineal melatonin rhythm. Several species with fully endogenous circannual rhythms are considered in Chapter 19. It should be emphasized that despite the emphasis in this review on Type I rhythms, there is no evidence to suggest that the fundamental mechanisms of photoperiodism are different in Type I and Type II rhythms. Indeed, both types of rhythms appear to depend on a circadian mechanism to measure DL, and the pineal gland is an important part of the photoperiodic mechanism in both (see below).

Keywords

Pineal Gland Syrian Hamster Photoperiodic Response Prairie Vole Djungarian Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, O. E X., & Lincoln, G. A. (1984). Reproductive refractoriness in rams and accompanying changes in the patterns of melatonin and prolactin secretion. Biology of Reproduction, 30, 143–158.PubMedCrossRefGoogle Scholar
  2. Badura, L. L., & Goldman, B. D. (1992). Central sites mediating reproductive responses to melatonin in juvenile male Siberian hamsters. Brain Research, 598, 98–106.PubMedCrossRefGoogle Scholar
  3. Badura, L. L., & Goldman, B. D. (1994). Prolactin secretion in female Siberian hamsters following hypothalamic deafferentation: Role of photoperiod and dopamine. Neuroendocrinology, 59, 49–56.PubMedCrossRefGoogle Scholar
  4. Badura, L. L., & Nunez, A. A. (1989). Photoperiodic modulation of sexual and aggressive behavior in female golden hamsters (Mesocricetus auratus): Role of the pineal gland. Hormones and Behavior, 23, 27–42.PubMedCrossRefGoogle Scholar
  5. Badura, L. L., Sisk, C. L., & Nunez, A. A. (1987a). Neural pathways involved in the photoperiodic control of reproductive physiology and behavior in female hamsters (Mesocricetus auratus). Neuroendocrinology, 46, 339–344.CrossRefGoogle Scholar
  6. Badura, L. L., Yant, W. R., & Nunez, A. A. (1987b). Photoperiodic modulation of steroid-induced lordosis in golden hamsters. Physiology and Behavior, 40, 551–554.CrossRefGoogle Scholar
  7. Bartke, A., Croft, B. T., & Dalterio, S. (1975). Prolactin restores plasma testosterone levels and stimulates testicular growth in hamsters exposed to short day-length. Endocrinology, 97, 1601–1604.PubMedGoogle Scholar
  8. Bartness, T. J., & Goldman, B. D. (1989). Mammalian pineal melatonin: A clock for all seasons. Experientia, 45, 939–945.PubMedCrossRefGoogle Scholar
  9. Bartness, T. J., & Wade, G. N. (1984). Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): Role of pineal gland, melatonin, gonads and diet. Endocrinology, 114, 492–498.PubMedCrossRefGoogle Scholar
  10. Bartness, T. J., & Wade, G. N. (1985). Photoperiodic control of seasonal body weight cycles in hamsters. Neuroscience and Biobehavioral Reviews, 9, 599–612.PubMedCrossRefGoogle Scholar
  11. Bartness, T. J., Wade, G. N., & Goldman, B. D. (1987). Are the short-photoperiod-induced decreases in serum prolactin responsible for the seasonal changes in energy balance in Syrian and Siberian hamsters? Journal of Experimental Zoology, 244, 437–454.PubMedCrossRefGoogle Scholar
  12. Bartness, T. J., Goldman, B. D., & Bittman, E. L. (1990). SCN lesions block the reception of melatonin daylength signals in Siberian hamsters. American Journal of Physiology, 260, R102–R112.Google Scholar
  13. Bartness, T. J., Powers, J. B., Hastings, M. H., Bittman, E. L., & Goldman, B. D. (1993). The timed infusion paradigm for melatonin delivery: What has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? Journal of Pineal Research, 15, 161–190.PubMedCrossRefGoogle Scholar
  14. Berna, M., DeSantis, M., & Mead, R. A. (1988). Effects of suprachiasmatic nuclear ablation and melatonin on delayed implantation in the spotted skunk. Neuroendocrinology, 48, 371–375.CrossRefGoogle Scholar
  15. Bittman, E. L. (1978). Hamster refractoriness: The role of insensitivity of pineal target tissues. Science, 202, 648–650.PubMedCrossRefGoogle Scholar
  16. Bittman, E. L. (1993). The sites and consequences of melatonin binding in mammals. American Zoologist, 33, 200–211.Google Scholar
  17. Bittman, E. L., & Karsch, F. J. (1984). Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biology of Reproduction, 30, 585–593.PubMedCrossRefGoogle Scholar
  18. Bittman, E. L., & Zucker, I. (1981). Photoperiodic termination of hamster refractoriness: Participation of the pineal gland. Biology of Reproduction, 24, 568–572.PubMedCrossRefGoogle Scholar
  19. Bittman, E. L., Goldman, B. D., & Zucker, I. (1979). Testicular responses to melatonin are altered by lesions of the suprachiasmatic nuclei in golden hamsters. Biology of Reproduction, 21, 647–656.PubMedCrossRefGoogle Scholar
  20. Bittman, E. L., Crandell, R. G., & Lehman, M. N. (1989). Influences of the paraventricular and suprachiasmatic nuclei and olfactory bulbs on melatonin responses in the golden hamster. Biology of Reproduction, 40, 118–126.PubMedCrossRefGoogle Scholar
  21. Bittman, E. L., Hegarty, C. M., Layden, M. Q., & Jonassen, J. A. (1990). Influences of photoperiod on sexual behaviour, neuroendocrine steroid receptors and adenohypophysial hormone secretion and gene expression in female golden hamsters. Journal of Molecular Endocrinology, 5, 15–20.PubMedCrossRefGoogle Scholar
  22. Bittman, E. L., Bartness, T. J., & Goldman, B. D. (1991). Suprachiasmatic and paraventricular control of photoperiodism in Siberian hamsters. American Journal of Physiology, 260, R90–R101.PubMedGoogle Scholar
  23. Blank, J. L., & Freeman, D. A. (1991). Differential reproductive response to short photoperiod in deer mice: Role of melatonin. Journal of Comparative Physiology A, 169, 501–506.CrossRefGoogle Scholar
  24. Blask, D. E., Leadem, C. A., Orstead, K. M., & Larsen, B. R. (1986). Prolactin cell activity in female and male Syrian hamsters: An apparent sexually dimorphic response to light deprivation and pinealectomy. Neuroendocrinology, 42, 15–20.PubMedCrossRefGoogle Scholar
  25. Bonnefond, C., Walker, A. P., Stutz, J. A., Maywood, E., Juss, T. S., Herbert, J., & Hastings, M. H. (1989). The hypothalamus and photoperiodic control of FSH secretion by melatonin in the male Syrian hamster. Journal of Endocrinology, 122, 247–254.PubMedCrossRefGoogle Scholar
  26. Bonnefond, C., Martinet, L., & Monnerie, R. (1990). Effects of timed melatonin infusions and lesions of the suprachiasmatic nuclei on prolactin and progesterone secretions in pregnant or pseudopregnant mink (Mustela vison). Journal of Neuroendocrinology, 2, 583–591.PubMedCrossRefGoogle Scholar
  27. Bronson, F. H. (1989). Mammalian reproductive biology. Chicago: University of Chicago Press.Google Scholar
  28. Bronson, F. H., & Heideman, P. D. (1994). Seasonal regulation of reproduction in mammals. In E. Knobil & J. D. Neill (Eds.), Physiology of reproduction (pp. 541–583). New York: Raven Press.Google Scholar
  29. Campbell, C. S., Finkelstein, J. S., & Turek, F. W. (1978). The interaction of photoperiod and testosterone on the development of copulatory behavior in castrated male hamsters. Physiology and Behavior, 21, 409–415.PubMedCrossRefGoogle Scholar
  30. Carlson, L. L., Zimmermann, A., & Lynch, G. R. (1989). Geographic differences for delay of sexual maturation in Peromyscus leucopus. Effects of photoperiod, pinealectomy, and melatonin. Biology of Reproduction, 41, 1004–1013.PubMedCrossRefGoogle Scholar
  31. Carter, C. S., Getz, L. L., Gavish, L., McDermott, J. L., & Arnold, P. (1980). Male-related pheromones and the activation of female reproduction in the prairie vole (Microtus ochrogaster). Biology of Reproduction, 23, 1038–1045.PubMedCrossRefGoogle Scholar
  32. Carter, D. S., and Goldman, B. D. (1982). Pineal is required for testicular maintenance in the Turkish hamster (Mesocricetus brandti). Endocrinology, 111, 863–871.PubMedCrossRefGoogle Scholar
  33. Carter, D. S., & Goldman, B. D. (1983a). Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): Duration is the critical parameter. Endocrinology, 113, 1261–1267.CrossRefGoogle Scholar
  34. Carter, D. S., Sc Goldman, B. D. (1983b). Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): Mediation by melatonin. Endocrinology, 113, 1268–1273.CrossRefGoogle Scholar
  35. Christian, J. J. (1980). Regulation of annual rhythms of reproduction in temperate small rodents. In A. Steinberger & E. Steinberger (Eds.), Testicular development, structure, and function (pp. 367–380). New York: Raven Press.Google Scholar
  36. Czyba, J. C., Girod, C., & Durand, N. (1964). Sur l’antagonisme épiphysohypophysiore et les variations saisonniers de la spermatogenese chez le Hamster doré (Mesocricetus auratus). Comptes Rendus des Séances de la Societé de Biologie et de ses Filiales, 158, 742–745.PubMedGoogle Scholar
  37. Dark, J., & Zucker, I. (1984). Gonadal and photoperiodic control of seasonal body weight changes in male voles. American Journal of Physiology, 247, R84–R88.PubMedGoogle Scholar
  38. Dark, J., Sc Zucker, I. (1985). Seasonal cycles in energy balance: Regulation by light. Annals of the New York Academy of Sciences, 453, 170–181.PubMedCrossRefGoogle Scholar
  39. Dark, J., Johnston, P. G., Healy, M., & Zucker, I. (1983). Latitude of origin influences photoperiodic control of reproduction of deer mice (Peromyscus maniculatus). Biology of Reproduction, 28, 213–220.PubMedCrossRefGoogle Scholar
  40. Desjardins, C., Bronson, E H., & Blank, J. L. (1986). Genetic selection for reproductive photoresponsiveness in deer mice. Nature, 322, 172–173.PubMedCrossRefGoogle Scholar
  41. Donham, R. S., Horton, T. H., Rollag, M. D., & Stetson, M. H. (1989). Age, photoperiodic responses, and pineal function in meadow voles, Microtus pennsylvanicus. Journal of Pineal Research, 7, 243–252.PubMedCrossRefGoogle Scholar
  42. Donham, R. S., Palacio, E., & Stetson, M. H. (1994). Dissociation of the reproductive and prolactin photoperiodic responses in male golden hamsters. Biology of Reproduction, 51, 366–372.PubMedCrossRefGoogle Scholar
  43. Dowell, S. E, & Lynch, G. R. (1987). Duration of the melatonin pulse in the hypothalamus controls testicular function in pinealectomized mice (Peromyscus leucopus). Biology of Reproduction, 36, 1095–1101.PubMedCrossRefGoogle Scholar
  44. Duncan, M. J., & Goldman, B. D. (1984). Hormonal regulation of the pelage color cycle in the Djungarian hamster, Phodopus sungorus. II. Role of prolactin. Journal of Experimental Zoology, 230, 97–103.PubMedCrossRefGoogle Scholar
  45. Duncan, M. J., & Goldman, B. D. (1985). Physiological doses of prolactin stimulate pelage pigmentation in Djungarian hamster. American Journal of Physiology, 248, R664–R667.PubMedGoogle Scholar
  46. Duncan, M. J., Goldman, B. D., DiPinto, M. N., & Stetson, M. H. (1985). Testicular function and pelage color have different critical daylengths in the Djungarian hamster, Phodopus sungorus sungorus. Endocrinology, 116, 424–430.PubMedCrossRefGoogle Scholar
  47. Duncan, M. J., Takahashi, J. S., Sc Dubocovich, M. L. (1989). Characteristics and autoradiographic localization of 2-[125I]-iodomelatonin binding sites in Djungarian hamster brain. Endocrinology, 125, 1011–1018.PubMedCrossRefGoogle Scholar
  48. Elliott, A. S., & Nunez, A. A. (1992). Photoperiod modulates the effects of steroids on sociosexual behaviors of hamsters. Physiology and Behavior, 51, 1189–1193.PubMedCrossRefGoogle Scholar
  49. Elliott, J. A. (1976). Circadian rhythms and photoperiodic time measurement in mammals. Federation Proceedings, 35, 2339–2346.PubMedGoogle Scholar
  50. Elliott, J. A., & Goldman, B. D. (1981). Seasonal reproduction: Photoperiodism and biological clocks. In N. T. Adler (Ed.), Neuroendocrinology of reproduction (pp. 377–423). New York: Plenum Press.CrossRefGoogle Scholar
  51. Elliott, J. A., & Goldman, B. D. (1989). Reception of photoperiodic information by fetal Siberian hamsters: Role of the mother’s pineal gland. Journal of Experimental Zoology, 252, 237–244.PubMedCrossRefGoogle Scholar
  52. Freeman, D. A., & Goldman, B. D. (1997a). Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters. Journal of Biological Rhythms, 12, 100–109.CrossRefGoogle Scholar
  53. Freeman, D. A., & Goldman, B. D. (1997b). Photoperiodic nonresponsive Siberian hamsters: Effects of age on the probability of nonresponsiveness. Journal of Biological Rhythms, 12, 110–121.CrossRefGoogle Scholar
  54. French, A. R. (1988). The patterns of mammalian hibernation. American Scientist, 76, 569–575.Google Scholar
  55. Glass, J. D., & Lynch, G. R. (1981). Melatonin: Identification of sites of antigonadal action in mouse brain. Science, 214, 821–823.PubMedCrossRefGoogle Scholar
  56. Glass, J. D., & Lynch, G. R. (1982). Diurnal rhythm of response to chronic intrahypothalamic melatonin injections in the white-footed mouse, Peromyscus leucopus. Neuroendocrinology, 35, 117–122.PubMedCrossRefGoogle Scholar
  57. Goldman, B. D. (1983). The physiology of melatonin in mammals. In R. J. Reiter (Ed.), Pineal research reviews (Vol. 1, pp. 145–182). New York: Liss.Google Scholar
  58. Goldman, B. D. (1991). Parameters of the circadian rhythm of pineal melatonin secretion affecting reproductive responses in Siberian hamsters. Steroids, 56, 218–225.PubMedCrossRefGoogle Scholar
  59. Goldman, B. D., & Elliott, J. A. (1988). Photoperiodism and seasonality in hamsters: role of the pineal gland. In M. H. Stetson (Ed.), Processing of environmental information in vertebrates (pp. 203–218). New York: Springer-Verlag.CrossRefGoogle Scholar
  60. Goldman, B. D., & Nelson, R. J. (1993). Melatonin and seasonality in mammals. In H.S. Yu & R. J. Reiter (Eds.), Melatonin: Biosynthesis, physiological effects, and clinical applications (pp. 225–252). Baco Raton, FL CRC Press.Google Scholar
  61. Goldman, B. D., Darrow, J. M., & Yogev, L. (1984). Effects of timed melatonin infusions on reproductive development in the Djungarian hamster (Phodopus sungorus). Endocrinology, 114, 2074–2083.PubMedCrossRefGoogle Scholar
  62. Goldman, S. L., Dhandapani, K., & Goldman, B. D. (2000). Genetic and environmental influences on short-day responsiveness in Siberian hamsters. Journal of Biological Rhythms, 15, 417–428.PubMedCrossRefGoogle Scholar
  63. Gorman, M. R. (1995). Seasonal adaptations of Siberian hamsters: I. Accelerated gonadal and somatic development in increasing versus static long day lengths. Biology of Reproduction, 53, 110–115.PubMedCrossRefGoogle Scholar
  64. Gorman, M. R., & Zucker, I. (1995a). Seasonal adaptations of Siberian hamsters. II. Pattern of change in day length controls annual testicular and body weight rhythms. Biology of Reproduction, 53, 116–125.CrossRefGoogle Scholar
  65. Gorman, M. R., & Zucker, I. (1995b). Testicular regression and recrudescence without subsequent photorefractoriness in Siberian hamsters. American journal of Physiology, 269, R800–R806.Google Scholar
  66. Gorman, M. R., & Zucker, I. (1997a). Environmental induction of photononresponsiveness in the Siberian hamster, Phodopus sungorus. American Journal of Physiology, 272, R887–R895.Google Scholar
  67. Gorman, M. R., & Zucker, I. (1997b). Pattern of change in melatonin duration determines testicular responses in Siberian hamsters, Phodopus sungorus. Biology of Reproduction, 56, 668–673.CrossRefGoogle Scholar
  68. Gorman, M. R., Freeman, D. A., & Zucker, I. (1997). Photoperiodism in hamsters: Abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators. Journal of Biological Rhythms, 12, 122–135.PubMedCrossRefGoogle Scholar
  69. Grosse, J., & Hastings, M. H. (1996). A role for the circadian clock of the suprachiasmatic nuclei in the interpretation of serial melatonin signals in the Syrian hamster. Journal of Biological Rhythms, 11, 317–324.PubMedCrossRefGoogle Scholar
  70. Hall, V. D., & Goldman, B. D. (1982). Hibernation in the female Turkish hamster (Mesocricetus brandti): An investigation of the role of the ovaries and of photoperiod. Biology of Reproduction, 27, 811–815.PubMedCrossRefGoogle Scholar
  71. Hall, V. D., Bartke, A., & Goldman, B. D. (1982). Role of the testes in regulating duration of hibernation in the Turkish hamster (Mesocricetus auratus). Biology of Reproduction, 27, 802–810.PubMedCrossRefGoogle Scholar
  72. Hastings, M. H., Walker, A. P., Roberts, A. C., & Herbert, J. (1988). Intra-hypothalamic melatonin blocks photoperiodic responsiveness in the male Syrian hamster. Neuroscience, 24, 987–991.PubMedCrossRefGoogle Scholar
  73. Hastings, M. H., Vance, G., & Maywood, E. (1989a). Some reflections on the phylogeny and function of the pineal. Experientia, 45, 903–909.CrossRefGoogle Scholar
  74. Hastings, M. H., Walker, A. P., Powers, J. B., Hutchison, J., Steel, E. A., & Herbert, J. (1989b). Differential effects of photoperiodic history on the response of gonadotrophins and prolactin to intermediate daylengths in the male Syrian hamster. journal of Biological Rhythms, 4, 335–350.CrossRefGoogle Scholar
  75. Hastings, M. H., Maywood, E. S., Ebling, F. J. P., Williams, L. M., & Titchener, L. (1991). Sites and mechanism of action of melatonin in the photoperiodic control of reproduction. In J. Arendt & P. Pevet (Eds.), Advances in pineal research (pp. 147–157). London: Libbey.Google Scholar
  76. Heath, H. W., & Lynch, G. R. (1982). Intraspecific differences for melatonin-induced reproductive regression and the seasonal molt in Peromyscus leucopus. General and Comparative Endocrinology, 48, 289–295.PubMedCrossRefGoogle Scholar
  77. Heideman, R D., & Bronson, E H. (1993). Sensitivity of Syrian hamsters (Mesocricetus auratus) to amplitudes and rates of photoperiodic change typical of the tropics. Journal of Biological Rhythms, 8, 325–337.PubMedCrossRefGoogle Scholar
  78. Herbert, J., & Klinowska, M. (1978). Day length and the annual reproductive cycle in the ferret (Mustelo furo): The role of the pineal body. In I. Assenmacher & D. S. Farner (Eds.), Environmental endocrinology (pp. 87–93). Berlin: Springer-Verlag.Google Scholar
  79. Herbert, J., Stacey, P. M., & Thorpe, D. H. (1978). Recurrent breeding seasons in pinealectomized or optic-nerve-sectioned ferrets. Journal of Endocrinology, 78, 389–397.PubMedCrossRefGoogle Scholar
  80. Hoffman, R. A., & Reiter, R. J. (1965). Pineal gland: Influence on gonads of male hamsters. Science, 148, 1609–1611.PubMedCrossRefGoogle Scholar
  81. Hoffman, R. A., Davidson, K., & Steinberg, K. (1982). Influence of photoperiod and temperature on weight gain, food consumption, fat pads and thyroxine in male golden hamsters. Growth, 46,150–162.PubMedGoogle Scholar
  82. Hoffmann, K. (1981). Photoperiodism in vertebrates. In J. Aschoff (Ed.), Handbook of behavioral neuro-biology. Biological rhythms (pp. 449–473). New York: Plenum Press.Google Scholar
  83. Hoffmann, K., Sc Illnerova, H. (1986). Photoperiodic effects in the Djungarian hamster. Rate of testicular regression and extension of pineal melatonin pattern depend on the way of change from long to short photoperiods. Neuroendocrinology, 43, 317–321.PubMedCrossRefGoogle Scholar
  84. Hoffmann, K., Illnerova, H., & Vanecek, J. (1986). Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic response in the Djungarian hamster (Phodopus sungorus). Neuroscience Letters, 67, 68–72.PubMedCrossRefGoogle Scholar
  85. Hong, S. M., Rollag, M. D., & Stetson, M. H. (1986). Maintenance of testicular function in Turkish hamsters: Interaction of photoperiod and the pineal gland. Biology of Reproduction, 34, 527–531.PubMedCrossRefGoogle Scholar
  86. Honrado, G. I., Bird, M., & Fleming, A. S. (1991a). The effects of short day exposure on seasonal and circadian reproductive rhythms in male golden hamsters. Physiology and Behavior, 49, 277–287.CrossRefGoogle Scholar
  87. Honrado, G. I., Paclik, L., & Fleming, A. S. (1991b). The effects of short day exposure on the seasonal and reproductive rhythms of female golden hamsters. Physiology and Behavior, 50, 357–363.CrossRefGoogle Scholar
  88. Horton, T. H. (1984). Growth and maturation in Microtus montanus Effects of photoperiods before and after weaning. Canadian Journal of Zoology, 62, 1741–1746.CrossRefGoogle Scholar
  89. Horton, T. H. (1985). Cross-fostering of voles demonstrates in utero effect of photoperiod. Biology of Reproduction, 33, 934–939.PubMedCrossRefGoogle Scholar
  90. Illnerova, H., & Vanacek, J. (1989). Complex control of the circadian rhythm in pineal melatonin production. In B. Mess, C. Ruzsas, L. Tima, & P. Pevet (Eds.), The pineal gland: Current state of pineal research (pp. 137–153). Amsterdam- Elsevier, and Budapest: Akademiai Kiado.Google Scholar
  91. Johnston, P. G., & Zucker, I. (1980). Photoperiodic regulation of the testes of adult white-footed mice (Peromyscus leucopus). Biology of Reproduction, 23, 859–866.PubMedCrossRefGoogle Scholar
  92. Karp, J. D., & Powers, J. B. (1993). Photoperiodic and pineal influences on estrogen-stimulated behaviors in female Syrian hamsters. Physiology and Behavior, 54, 19–28.PubMedCrossRefGoogle Scholar
  93. Karp, J. D., Dixon, M. E., & Powers, J. B. (1990). Photoperiod history, melatonin, and reproductive responses of male Syrian hamsters. Journal of Pineal Research, 8, 137–152.PubMedCrossRefGoogle Scholar
  94. Karp, J. D., Hastings, M. H., & Powers, J. B. (1991). Melatonin and the coding of day length in male Syrian hamsters. Journal of Pineal Research, 10, 210–217.PubMedCrossRefGoogle Scholar
  95. Karsch, F. J., Bittman, E. L., Foster, D. L., Goodman, R. L., Legan, S. J., & Robinson, J. E. (1984). Neuroendocrine basis of seasonal reproduction. Recent Progress in Hormone Research, 40, 185–225.PubMedGoogle Scholar
  96. Karsch, F. J., Bittman, E. L., Robinson, J. E., Yellon, S. M., Wayne, N. L., Olster, D. H., & Kaynard, A. H. (1986). Melatonin and photorefractoriness: Loss of response to the melatonin signal leads to seasonal reproductive transitions in the ewe. Biology of Reproduction, 34, 265–274.PubMedCrossRefGoogle Scholar
  97. Kerbeshian, M. C., Bronson, F. H., & Bellis, E. D. (1994). Variation in reproductive photoresponsiveness in a wild population of meadow voles. Biology of Reproduction, 50, 745–750.PubMedCrossRefGoogle Scholar
  98. Miman, R. M., & Lynch, G. R. (1992). Evidence for genetic variation in the occurrence of the photoresponse of the Djungarian hamster, Phodopus sungorus. Journal of Biological Rhythms, 7, 161–175.CrossRefGoogle Scholar
  99. Krause, D. N., & Dubocovich, M. L. (1990). Regulatory sites in the melatonin system of mammals. Trends in Neuroscience, 13, 464–470.CrossRefGoogle Scholar
  100. Lee, T. M. (1993). Development of meadow voles is influenced postnatally by maternal photoperiodic history. American Journal of Physiology, 265, R749–R755.PubMedGoogle Scholar
  101. Lee, T. M., & Zucker, I. (1988). Vole infant development is influenced perinatally by maternal photo-periodic history. American Journal of Physiology, 255, R831–R838.PubMedGoogle Scholar
  102. Lehman, M. N., Bittman, E. L., & Newman, S. W. (1984). Role of the hypothalamic paraventricular nucleus in neuroendocrine responses to daylength in the golden hamster. Brain Research, 308, 25–32.PubMedCrossRefGoogle Scholar
  103. Lerchl, A., & Nieschlag, E. (1992). Interruption of nocturnal pineal melatonin synthesis in spontaneous recrudescent Djungarian hamsters (Phodopus sungorus). Journal of Pineal Research, 13, 36–41.PubMedCrossRefGoogle Scholar
  104. Lerner, A. B., Case, J. D., Lee, T. H., Takahashi, Y., & Mori, W. (1958). Isolation of melatonin, the pineal factor that lightens melanocytes. Journal of the American Chemical Society, 80, 2587–2594.CrossRefGoogle Scholar
  105. Lincoln, G. A. (1992). Administration of melatonin into the mediobasal hypothalamus as a continuous or intermittent signal affects the secretion of follicle stimulating hormone and prolactin in the ram. Journal of Pineal Research, 12, 135–144.PubMedCrossRefGoogle Scholar
  106. Lincoln, G. A. (1994). Effects of placing micro-implants of melatonin in the pars tuberalis, pars distalis and the lateral septum of the forebrain on the secretion of FSH and prolactin, and testicular size in rams. Journal of Endocrinology, 142, 267–276.PubMedCrossRefGoogle Scholar
  107. Lincoln, G. A., & Clarke, I. J. (1994). Photoperiodically-induced cycles in the secretion of prolactin in hypothalamo-pituitary disconnected rams: Evidence for translation of the melatonin signal in the pituitary gland. Journal of Neuroendocrinology, 6, 251–260.PubMedCrossRefGoogle Scholar
  108. Lincoln, G. A., & Maeda, K. -I. (1992). Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams. Journal of Endocrinology, 132, 201–215.PubMedCrossRefGoogle Scholar
  109. Loudon, A. S. I. (1994). Photoperiod and the regulation of annual and circannual cycles of food intake. Proceedings of the Nutrition Society, 53, 495–507.PubMedCrossRefGoogle Scholar
  110. Lynch, G. R., Heath, H. W., & Johnston, C. M. (1981). Effect of geographical origin on the photoperiodic control of reproduction in the white-footed mouse, Peromyscus leucopus. Biology of Reproduction, 25, 475–480.PubMedCrossRefGoogle Scholar
  111. Lynch, G. R., Sullivan, J. K., Heath, H. W., & Tamarkin, L. (1982). Daily melatonin rhythms in photo-period sensitive and insensitive while-footed mice (Peromyscus leucopus). In R. J. Reiter (Ed.), The pineal and its hormones (pp. 67–73). New York: Liss.Google Scholar
  112. Malpaux, B., Robinson, J. E., & Karsch, E J. (1987). Reproductive refractoriness of the ewe to inductive photoperiod is not caused by inappropriate secretion of melatonin. Biology of Reproduction, 36,1333–1341.PubMedCrossRefGoogle Scholar
  113. Malpaux, B., Moenter, S. M., Wayne, N. L., Woodfill, C. J. I., & Karsch, F. J. (1988). Reproductive refactoriness of the ewe to inhibitory photoperiod is not caused by alteration of the circadian secretion of melatonin. Neuroendocrinology, 48, 264–270.PubMedCrossRefGoogle Scholar
  114. Malpaux, B., Daveau, A., Maurice, F., Gayrard, V., & Thiery, J.-C. (1993). Short-day effects of melatonin on luteinizing hormone secretion in the ewe: Evidence for central sites of action in the mediobasal hypothalamus. Biology of Reproduction, 48, 752–760.PubMedCrossRefGoogle Scholar
  115. Malpaux, B., Daveau, A., Maurice, E, Locatelli, A., & Thiéry, J. C. (1994). Evidence that melatonin binding sites in the pars tuberalis do not mediate the photoperiodic actions of melatonin on LH and prolactin secretion in ewes. Journal of Reproduction and Fertility, 101, 625–632.PubMedCrossRefGoogle Scholar
  116. Malpaux, B., Skinner, D. C., & Maurice, E (1995). The ovine pars tuberalis does not appear to be targeted by melatonin to modulate luteinizing hormone secretion, but may be important for prolactin release. Journal of Neuroendocrinology, 7 199–206.PubMedCrossRefGoogle Scholar
  117. Martinet, L., Allain, D., & Weiner, C. (1984). Role of prolactin in the photoperiodic control of moulting in the mink (Mustela vison). Journal of Endocrinology, 103, 9–15.PubMedCrossRefGoogle Scholar
  118. Maywood, E. S., & Hastings, M. H. (1995). Lesions of the iodomelatonin-binding sites of the mediobasal hypothalamus spare the lactotropic, but block the gonadotropic response of male Syrian hamsters to short photoperiod and to melatonin. Endocrinology, 136, 144–153.PubMedCrossRefGoogle Scholar
  119. Maywood, E. S., Buttery, R. C., Vance, G. H. S., Herbert, J., & Hastings, M. H. (1990). Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase nor to lesions of the suprachiasmatic nuclei. Biology of Reproduction, 43, 174–182.PubMedCrossRefGoogle Scholar
  120. Maywood, E. S., Grosse, J., Lindsay, J. O., Karp, J. D., Powers, J. B., Ebling, E J. P., Herbert, J., & Hastings, M. H. (1992). The effect of signal frequency on the gonadal response of male Syrian hamsters to programmed melatonin infusions. Journal of Neuroendocrinology, 4, 37–43.PubMedCrossRefGoogle Scholar
  121. McCord, C. P., & Allen, F. P. (1917). Evidences associating pineal gland function with alterations in pigmentation. Journal of Experimental Zoology, 23, 207.CrossRefGoogle Scholar
  122. Miernicki, M., Karp, J. D., & Powers, J. B. (1990). Pinealectomy prevents short photoperiod inhibition of male hamster sexual behavior. Physiology and Behavior, 47, 293–299.PubMedCrossRefGoogle Scholar
  123. Milette, J. J., Schwartz, N. B., & Turek, F. W. (1988). Importance of follicle-stimulating hormone in the initiation of testicular growth in photostimulated Djungarian hamsters. Endocrinology, 122, 1060–1066.PubMedCrossRefGoogle Scholar
  124. Minneman, K. P., & Wurtman, R. J. (1976). The pharmacology of the pineal gland. Annual Review of Pharmacology and Toxicology, 16, 33–51.PubMedCrossRefGoogle Scholar
  125. Moore, R. Y., & Klein, D. C. (1974). Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Research, 71, 17–33.PubMedCrossRefGoogle Scholar
  126. Morgan, P. J., Barrett, P., Howell, H. E., & Helliwell, R. (1994). Melatonin receptors: Localization, molecular pharmacology and physiological significance. Neurochemistry International, 24, 101–146.PubMedCrossRefGoogle Scholar
  127. Morin, L. P., & Zucker, I. (1978). Photoperiodic regulation of copulatory behaviour in the male hamster. Journal of Endocrinology, 77, 244–258.CrossRefGoogle Scholar
  128. Nelson, R. J. (1985). Photoperiod influences reproduction in the prairie vole (Microtus ochrogaster). Biology of Reproduction, 33, 596–602.PubMedCrossRefGoogle Scholar
  129. Nelson, R. J. (1987). Photoperiod-nonresponsive morphs: A possible variable in microtine population-density fluctuations. American Naturalist, 130, 350–369.CrossRefGoogle Scholar
  130. Nelson, R. J., Bamat, M. K., & Zucker, I. (1982). Photoperiodic regulation of testis function in rats: Mediation by a circadian mechanism. Biology of Reproduction, 26, 329–335.PubMedCrossRefGoogle Scholar
  131. Nelson, R. J., Badura, L. L., & Goldman, B. D. (1990). Mechanisms of seasonal cycles of behavior. Annual Review of Psychology, 41, 81–108.PubMedCrossRefGoogle Scholar
  132. Niklowitz, P., & Hoffmann, K. (1988). Pineal and pituitary involvement in the photoperiodic regulation of body weight, coat color and testicular size of the Djungarian hamster, Phodopus sungorus. Biology of Reproduction, 39, 489–498.PubMedCrossRefGoogle Scholar
  133. Niklowitz, P., Lerchl, A., & Nieschlag, E. (1994). Photoperiodic responses in Djungarian hamsters (Phodopus sungorus): Importance of light history for pineal and serum melatonin profiles. Biology of Reproduction, 51, 714–724.PubMedCrossRefGoogle Scholar
  134. Pitrosky, B., Kirsch, R., Vivien-Roels, B., Georg-Bentz, I., Canguilhem, B., & Pevet, P. (1995). The photoperiodic response in Syrian hamster depends upon a melatonin-driven circadian rhythm of sensitivity to melatonin. Journal of Neuroendocrinology, 7, 889–895.PubMedCrossRefGoogle Scholar
  135. Powers, J. B., Steel, E. A., Hutchison, J. B., Hastings, M. H., Herbert, J., & Walker, A. P. (1989). Photoperiodic influences on sexual behavior in male Syrian hamsters. Journal of Biological Rhythms, 4(1), 61–78.PubMedCrossRefGoogle Scholar
  136. Puchalski, W., & Lynch, G. R. (1986). Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. Journal of Comparative Physiology A, 159, 7–11.CrossRefGoogle Scholar
  137. Puchalski, W., & Lynch, G. R. (1988). Characterization of circadian function in Djungarian hamsters insensitive to short day photoperiod. Journal of Comparative Physiology A, 162, 309–316.CrossRefGoogle Scholar
  138. Ralph, C. L., Mull, D., Lynch, H. J., & Hedlund, L. (1971). A melatonin rhythm persists in rat pineals in darkness. Endocrinology, 89, 1361–1366.PubMedCrossRefGoogle Scholar
  139. Reiter, R. J. (1969). Pineal function in long term blinded male and female golden hamsters. General and Comparative Endocrinology, 12, 460–468.PubMedCrossRefGoogle Scholar
  140. Reiter, R. J. (1980). The pineal and its hormones in the control of reproduction. Endocrine Reviews, 1, 109–131.PubMedCrossRefGoogle Scholar
  141. Rivkees, S. A., Hall, D. A., Weaver, D. R., & Reppert, S. M. (1988). Djungarian hamsters exhibit reproductive responses to changes in daylength at extreme photoperiods. Endocrinology, 122, 2634–2638.PubMedCrossRefGoogle Scholar
  142. Robinson, J. E., & Karsch, F. J. (1984). Refractoriness to inductive day lengths terminates the breeding season of the suffolk ewe. Biology of Reproduction, 31, 656–663.PubMedCrossRefGoogle Scholar
  143. Robinson, J. E., & Karsch, F. J. (1987). Photoperiodic history and a changing melatonin pattern can determine the neuroendocrine response of the ewe to daylength. Journal of Reproduction and Fertility, 80, 159–165.PubMedCrossRefGoogle Scholar
  144. Robinson, J. E., Wayne, N. L., & Karsch, F. J. (1985). Refractoriness to inhibitory day lengths initiates the breeding season of the suffolk ewe. Biology of Reproduction, 32, 1024–1030.PubMedCrossRefGoogle Scholar
  145. Shaw, D., & Goldman, B. D. (1995a). Gender differences in influence of prenatal photoperiods on postnatal pineal melatonin rhythms and serum prolactin and follicle-stimulating hormone in the Siberian hamster (Phodopus sungorus). Endocrinology, 136, 4237–4246.CrossRefGoogle Scholar
  146. Shaw, D., & Goldman, B. D. (1995b). Influence of prenatal and postnatal photoperiods on postnatal testis development in the Siberian hamster (Phodopus sungorus). Biology of Reproduction, 52, 833–838.CrossRefGoogle Scholar
  147. Shaw, D., & Goldman, B. D. (1995c). Influence of prenatal photoperiods on postnatal reproductive responses to daily infusions of melatonin in the Siberian hamster (Phodopus sungorus). Endocrinology, 136, 4231–4236.CrossRefGoogle Scholar
  148. Smale, L., Dark, J., & Zucker, I. (1988a). Pineal and photoperiod influences on fat deposition, pelage, and testicular activity in male meadow voles. Journal of Biological Rhythms, 3, 349–355.CrossRefGoogle Scholar
  149. Smale, L., Nelson, R. J., & Zucker, I. (1988b). Daylength influences pelage and plasma prolactin concentrations but not reproduction in the prairie vole, Microtus ochrogaster. Journal of Reproduction and Fertility, 83, 99–106.CrossRefGoogle Scholar
  150. Song, C. K., & Bartness, T.J. (1996). The effects of anterior hypothalamic lesions on short-day responses in Siberian hamsters given timed melatonin infusions. Journal of Biological Rhythms, 11(1), 14–26.PubMedCrossRefGoogle Scholar
  151. Steinlechner, S., Heldmaier, G., & Becker, H. (1983). The seasonal cycle of body weight in the Djungarian hamster: Photoperiodic control and the influence of starvation and melatonin. Oecologia, 60, 401–405.CrossRefGoogle Scholar
  152. Stetson, M. H., & Watson-Whitmyre, M. (1986). Effects of exogenous and endogenous melatonin on gonadal function in hamsters. Journal of Neural Transmission Supplement, 21, 55–80.PubMedGoogle Scholar
  153. Stetson, M. H., Watson-Whitmyre, M., & Matt, K. S. (1977). Termination of photorefractoriness in golden hamsters: Photoperiodic requirements. Journal of Experimental Zoology, 202, 81–88.PubMedCrossRefGoogle Scholar
  154. Stetson, M. H., Elliott, J. A., Sc Goldman, B. D. (1986). Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters (Phodopus sungorus). Biology of Reproduction, 34, 664–669.PubMedCrossRefGoogle Scholar
  155. Stirland, J. A., Grosse, J., Loudon, A. S. I., Hastings, M. H., & Maywood, E. S. (1995). Gonadal responses of the male tau mutant Syrian hamster to short-day-like programmed infusions of melatonin. Biology of Reproduction, 53, 361–367.PubMedCrossRefGoogle Scholar
  156. Stirland, J. A., Hastings, M. H., Loudon, A. S. I., & Maywood, E. S. (1996a). The tau mutation in the Syrian hamster alters the photoperiodic responsiveness of the gonadal axis to melatonin signal frequency. Endocrinology, 137, 2183–2186.CrossRefGoogle Scholar
  157. Stirland, J. A., Mohammad, Y. N., & Loudon, A. S. I. (1996b). A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductve response to photoperiod change. Proceedings of the Royal Society of London. B. Biological Sciences, 263, 345–350.Google Scholar
  158. Sullivan, J. K, Sc Lynch, G. R. (1986). Photoperiod time measurement for activity torpor, molt and reproduction in mice. Physiology and Behavior, 36, 167–174.PubMedCrossRefGoogle Scholar
  159. Tamarkin, L., Hollister, C. W., Lefebvre, N. G., & Goldman, B. D. (1977). Melatonin induction of gonadal quiesence in pinealectomized Syrian hamsters. Science, 198, 953–955.PubMedCrossRefGoogle Scholar
  160. Underwood, H., & Goldman, B. D. (1987). Vertebrate circadian and photoperiodic systems: Role of the pineal gland and melatonin. Journal of Biological Rhythms, 2, 279–315.PubMedCrossRefGoogle Scholar
  161. Vitale, P. M., Darrow, J. M., Duncan, M. J., Shustak, C. A., & Goldman, B. D. (1985). Effects of photo-period, pinealectomy and castration on body weight and daily torpor in Djungarian hamsters (Phodopus sungorus). Journal of Endocrinology, 106, 367–375.PubMedCrossRefGoogle Scholar
  162. Vitaterna, M. H., Sc Turek, F. W. (1993). Photoperiodic responses differ among inbred strains of golden hamsters (Mesocricetus auratus). Biology of Reproduction, 49, 496–501.PubMedCrossRefGoogle Scholar
  163. Wade, G. N. (1986). Sex steroids and energy balance: Sites and mechanisms of action. Annals of the New York Academy of Sciences, 474, 389–399.PubMedCrossRefGoogle Scholar
  164. Wade, G. N., Bartness, T. J., & Alexander, J. R. (1986). Photoperiod and body weight in female Syrian hamsters: Skeleton photoperiods, response magnitude, and development of refractoriness. Physiology and Behavior, 37, 863–868.PubMedCrossRefGoogle Scholar
  165. Watson-Whitmyre, M., & Stetson, M. H. (1983). Simulation of peak pineal melatonin release restores sensitivity to evening melatonin injections in pinealectomized hamsters. Endocrinology, 112, 763–765.PubMedCrossRefGoogle Scholar
  166. Weaver, D. R., & Reppert, S. M. (1986). Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology, 119, 2861–2863.PubMedCrossRefGoogle Scholar
  167. Weaver, D. R., Keohan, J. T., & Reppert, S. M. (1987). Definition of a prenatal sensitive period for maternal-fetal communication of daylength. American Journal of Physiology, 253, E701–E704.PubMedGoogle Scholar
  168. Zucker, I. (1985). Pineal gland influences period of circannual rhythms of ground squirrels. American Journal of Physiology, 249, R111–R115.PubMedGoogle Scholar
  169. Zucker, I., Lee, T. M., & Dark, J. (1991). Suprachiasmatic nucleus and annual rhythms of mammals In D. C. Klein, R. Y. Moore, & S. M. Reppert (Eds.), Suprachiasmatic nucleus: The mind’s clock (pp. 246–259). New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Michael R. Gorman
    • 1
  • Bruce D. Goldman
    • 2
  • Irving Zucker
    • 3
  1. 1.Department of PsychologyUniversity of California, San DiegoLa Jolla
  2. 2.Department of Physiology and NeurobiologyUniversity of ConnecticutStorrs
  3. 3.Departments of Psychology and Integrative BiologyUniversity of CaliforniaBerkeley

Personalised recommendations