Skip to main content

Cholesterol Esterase

  • Chapter
Intestinal Lipid Metabolism

Abstract

The name pancreatic cholesterol esterase is ascribed to the only enzyme in the pancreas that hydrolyzes cholesterol esters to unesterified cholesterol and free fatty acids. However, extensive investigations over a period of more than 30 years revealed that a protein with similar properties can also be purified from homogenates of several other tissues and body fluids and that the enzyme is a nonspecific lipase capable of hydrolyzing cholesteryl esters, vitamin esters, triacylglycerol, phospholipids, and lysophospholipids. At the onset of these investigations, it was not clear whether these various enzyme activities were properties of the same protein. Thus, this enzyme was also named nonspecific lipase, phospholipase A1 lysophospholipase, bile-salt-stimulated lipase, bile-salt-dependent lipase, carboxyl ester lipase, and carboxyl ester hydrolase. (Please see Rudd and Brockman, 1984; Wang and Hart-suck, 1993, for a historic perspective of this protein.) It required the cloning of cDNA based on different enzyme activities from different tissues and different species to conclusively demonstrate that the same gene product has several distinct but related enzymatic activities (Han et al., 1987; Kissel et al., 1989; Kyger et al., 1989; Hui and Kissel, 1990; Reue et al., 1991; Colwell et al., 1993; Mackay and Lawn, 1995). Sequence comparison with other proteins also revealed that this enzyme is responsible for the lipoamidase activity in milk (Hui et al., 1993), which may account for its ability to hydrolyze the physiological lipoamide substrate ceramide (Nyberg et al., 1998). Due to the various substrates for this enzyme, the best nomenclature for its name has been widely debated over the years. The more commonly used names include carboxyl ester lipase (CEL), which is based on its general reactivity with lipids containing carboxyl ester bonds; cholesterol esterase or cholesterol ester lipase, which is based on its documented physiological function as a cholesteryl ester hydrolase; and bile-salt-stimulated lipase (BSSL) or bile salt-dependent lipase (BSDL), which is based on the unique bile-salt-dependency of this enzyme. Because CEL can be used to refer to the enzymatic properties and physiological function of this protein, we have adopted this terminology throughout this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto-Setala, K., Bisgaier, C. L., Ho, A., Kieft, K. A., Traber, M. G., Kayden, H. J., Ramakrishnan, R., Walsh, A., Essenburg, A. D., and Breslow, J. L., 1994, Intestinal expression of human apolipoprotein A-IV in transgenic mice fails to influence dietary lipid absorption or feeding behavior, J. Clin. Invest. 93:1776–1786.

    Article  PubMed  CAS  Google Scholar 

  • Alemi, B., Hamosh, M., Scanlon, J. W., Salzman-Mann, C., and Hamosh, P., 1981, Fat digestion in very low birthweight infants: Effect of addition of human milk to low birthweight formula, Pediatrics 68:484–489.

    PubMed  CAS  Google Scholar 

  • Bennett Clark, S., and Tercyak, A. M., 1984, Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function, J. Lipid Res. 25:148–159.

    Google Scholar 

  • Bennett Clark, S., Lawergren, B., and Martin, J. V.,1973, Regional intestinal absorptive capacities for triolein: An alternative to markers, Am. J. Physiol. 225:574–585.

    Google Scholar 

  • Bhat, S. G., and Brockman, H. L., 1982, The role of cholesteryl ester hydrolysis and synthesis in cholesterol transport across rat intestinal mucosal membrane. A new concept, Biochem. Biophys. Res. Commun. 109:486–492.

    Article  PubMed  CAS  Google Scholar 

  • Blackberg, L., and Hernell, O., 1993, Bile salt-stimulated lipase in human milk. Evidence that bile salt induces lipid binding and activation via binding to different sites, FEBS Letters 323:207–210.

    Article  PubMed  CAS  Google Scholar 

  • Boehm, G., Borte, M., Bohles, H. J., Muller, H., Kohn, G., and Moro, G., 1996, Docosahexaenoic and arachidonic acid content of serum and red blood cell membrane phospholipids of preterm infants fed breast milk, standard formula or formula supplemented with n-3 and n-6 PUFA, Eur. J. Pediatrics 155:410–416.

    Article  CAS  Google Scholar 

  • Boehm, G., Muller, H., Kohn, G., Moro, G., Minoli, I., and Bohles, H. J., 1997, Docosahexaenoic and arachidonic acid absorption in preterm infants fed LCP-free or LCP-suplemented formula in comparison to infants fed fortified breast milk, Ann. Nutrit. Met. 41:235–241.

    Article  CAS  Google Scholar 

  • Borgström, B., 1968, Quantitative aspects of the intestinal absorption and metabolism of cholesterol and B-sitosterol in the rat, J. Lipid Res. 9:473–481.

    PubMed  Google Scholar 

  • Borja, C. R., Vahouny, G. V., and Treadway, C. R., 1964, Role of bile and pancreatic juice in cholesterol absorption and esterification, Am. J. Physiol. 206:223–228.

    PubMed  CAS  Google Scholar 

  • Brodt-Eppley, J., White, P., Jenkins, S., and Hui, D. Y., 1995, Plasma cholesterol esterase level is a determinant for an atherogenic lipoprotein profile in normolipidemic human subjects, Biochim. Biophys. Acta 1272:69–72.

    Article  PubMed  Google Scholar 

  • Bruneau, N., and Lombardo, D., 1995, Chaperone function of a Grp94-related protein for folding and transport of the pancreatic bile salt-dependent lipase, J. Biol. Chem. 270:13524–13533.

    Article  PubMed  CAS  Google Scholar 

  • Bruneau, N., Nganga, A., Fisher, E. A., and Lombardo, D., 1997, O-glycosylation of C-terminal tandem repeated sequences regulates the secretion of rat pancreatic bile salt dependent lipase, J. Biol. Chem. 272:27353–27361.

    Article  PubMed  CAS  Google Scholar 

  • Camulli, E. A., Linke, M. J., Brockman, H. L., and Hui, D. Y., 1989, Identity of a cytosolic neutral cholesterol esterase in rat liver with the pancreatic bile salt stimulated cholesterol esterase, Biochim. Biophys. Acta 1005:177–182.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, S. E., Ford, A. J., Werkman, S. H., Peeples, J. M., and Koo, W. W., 1996, Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin, Ped. Res. 39:882–888.

    Article  CAS  Google Scholar 

  • Chen, Q., Sternby, B., and Nilsson, A., 1989, Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase, Biochim. Biophys. Acta 1004:372–385.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Sternby, B., Akesson, B., and Nilsson, A., 1990, Effects of human pancreatic lipase-colipase and carboxyl ester lipase on eicosapentaenoic and arachidonic acid ester bonds of triacylglycerols rich in fish oil fatty acids. Biochim. Biophys. Acta. 1044:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Blackberg, L., Nilsson, A., Sternby, B., and Hernell, O., 1994, Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile saltstimulated lipase, Biochim. Biophys. Acta 1210:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J .C. H., Miercke, L. J. W., Krucinski, J., Starr, J. R., Saenz, G., Wang, X., Spilburg, C. A., Lange, L. G., Ellsworth, J. L., and Stroud, R. M., 1998, Structure of bovine pancreatic cholesterol esterase at 1.6 angstrom: Novel structural features involved in lipase activation, Biochem. 37:5107–5117.

    Article  CAS  Google Scholar 

  • Colwell, N. S., Aleman-Gomez, J. A., and Kumar, B. V., 1993, Molecular cloning and expression of rabbit pancreatic cholesterol esterase, Biochim. Biophys. Acta 1172:175–180.

    Article  PubMed  CAS  Google Scholar 

  • Crissinger, K. D., Burney, D. L., Velasquez, O. R., and Gonzalez, E., 1994, An animal model of necrotizing enterocolitis induced by infant formula and ischemia in developing piglets, Gastroenterol. 106:1215–1222.

    CAS  Google Scholar 

  • DiPersio, L. P., and Hui, D. Y., 1993, Aspartic acid 320 is required for optimal activity of rat pancreatic cholesterol esterase, J. Biol. Chem. 268:300–304.

    PubMed  CAS  Google Scholar 

  • DiPersio, L. P., Fontaine, R. N., and Hui, D. Y., 1990, Identification of the active site serine in pancreatic cholesterol esterase by chemical modification and site-specific mutagenesis, J. Biol. Chem. 265:16801–16806.

    PubMed  CAS  Google Scholar 

  • DiPersio, L. P., Fontaine, R. N., and Hui, D. Y., 1991, Site-specific mutagenesis of an essential histidine residue in pancreatic cholesterol esterase, J. Biol. Chem. 266:4033–4036.

    PubMed  CAS  Google Scholar 

  • DiPersio, L. P., Carter, C. P., and Hui, D. Y., 1994, Exon 11 of the rat cholesterol esterase gene encodes domains important for intracellular processing and bile salt-modulated activity of the protein, Biochem. 33:3442–3448.

    Article  CAS  Google Scholar 

  • Feaster, S. R., Quinn, D. M., and Barnett, B. L., 1997, Molecular modeling of the structures of human and rat pancreatic cholesterol esterases, Protein Science 6:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, E., and Borgström, B., 1989, Effects of tetrahydrolipstatin, a lipase inhibitor, on absorption of fat from the intestine of the rat, Biochim. Biophys. Acta 1001:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, E., and Borgström, B., 1990, Intestinal absorption of tetinol and retinyl palmitate in the rat, Lipids 25:549–552.

    Article  PubMed  CAS  Google Scholar 

  • Foreman-van Drongelen, M. M., van Houwelingen, A. C., Kester, A. D., Blanco, C. E., Hasaart, T. H., and Hornstra, G., 1996, Influence of feeding artificial formula milks containing docosahexaenoic and arachidonic acids on the postnatal long-chain polyunsaturated fatty acid status of healthy preterm infants, Br. J. Nutrit. 76:649–667.

    Article  CAS  Google Scholar 

  • Gallo, L. L., 1981, Sterol ester hydrolase from rat pancreas, Methods in Enzymol. 71:664–674.

    Article  CAS  Google Scholar 

  • Gallo, L. L., Newbill, T., Hyun, J., Vahouny, G. V., and Treadwell, C. R., 1977, Role of pancreatic cholesterol esterase in the uptake and esterification of cholesterol by isolated intestinal cells, Proc. Soc. Expt. Biol. Med. 156:277–281.

    CAS  Google Scholar 

  • Gallo, L. L., Chiang, Y., Vahouny, G. V., and Treadwell, C. R., 1980, Localization and origin of rat intestinal cholesterol esterase determined by immunocytochemistry, J. Lipid Res. 21:537–545.

    PubMed  CAS  Google Scholar 

  • Gallo, L. L., Clark, S. B., Myers, S., and Vahouny, G. V., 1984, Cholesterol absorption in rat intestine: Role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase, J. Lipid Res. 25:604–612.

    PubMed  CAS  Google Scholar 

  • Gallo, L. L., Wadsworth, J. A., and Vahouny, G.V., 1987, Normal cholesterol absorption in rats deficient in intestinal acyl coenzyme A:cholesterol acyltransferase activity, J. Lipid Res. 28:381–387.

    PubMed  CAS  Google Scholar 

  • Gassama-Diagne, A., Fauvel, J., and Chap, H., 1989, Purification of a new, calcium-independent, high molecular weight phospholipase A-2/lysophospholipase (Phospholipase B) from guinea pig intestinal brush-border membrane, J. Biol. Chem. 264:9470–9475.

    PubMed  CAS  Google Scholar 

  • Gjellesvik, D. R., 1991, Fatty acid specificity of bile salt-dependent lipase: Enzyme recognition and super-substrate effects, Biochim. Biophys. Acta. 1086:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Gjellesvik, D. R., Lombardo, D., and Walther, B. T., 1992, Pancreatic bile salt dependent lipase from cod (Gadus morhua): Purification and properties, Biochim. Biophys. Acta 1124:123–134.

    Google Scholar 

  • Han, J. H., Stratowa, C., and Rutter, W. J., 1987, Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning, Biochem. 26:1617–1625.

    Article  CAS  Google Scholar 

  • Heider, J. G., Pickens, C. E., and Kelly, L. A., 1983, Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57–118 in the rabbit, J. Lipid Res. 24:1127–1134.

    PubMed  CAS  Google Scholar 

  • Hernell, O., and Olivecrona, T., 1974, Human milk lipases. II. Bile salt stimulated lipase, Biochim. Biophys. Acta 369:234–244.

    Article  PubMed  CAS  Google Scholar 

  • Hernell, O., Blackberg, L., Chen, Q., Sternby, B., and Nilsson, A., 1993, Does the bile salt-stimulated lipase of human milk have a role in the use of the milk long-chain polyunsaturated fatty acids, J. Ped. Gastroenterol. Nutrit. 16:426–431.

    Article  CAS  Google Scholar 

  • Herr, F. M., Wardlaw, S. A., Kakkad, B., Albrecht, A., Quick, T. C., and Ong, D. E., 1993, Intestinal vitamin A metabolism: coordinate distribution of enzymes and CRBP(II), J. Lipid Res. 34:1545–1554.

    PubMed  CAS  Google Scholar 

  • Holtsberg, F. W., Ozgur, L. E., Garsetti, D. E., Myers, J., Egan, R. W., and Clark, M. A., 1995, Presence in human eosinophils of a lysophospholipase similar to that found in the pancreas, Biochem. J. 309:141–144.

    PubMed  CAS  Google Scholar 

  • Howies, P., Stemmerman, G., Fenoglio-Preiser, C., and Hui, D., 1996a, Bile salt stimulated lipase activity prevents intestinal damage in mice, FASEB J. 10:A190.

    Google Scholar 

  • Howies, P. N., Carter, C. P., and Hui, D. Y., 1996b, Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice, J. Biol. Chem. 271:7196–7202.

    Article  Google Scholar 

  • Howies, P., Wagner, B., and Davis, L., 1998, Bile salt stimulated lipase is required for proper digestion and absorption of milk triglycerides in neonatal mice, FASEB J. 12:A851.

    Google Scholar 

  • Howies, P. N., Stemmerman, G. N., Fenoglio-Preiser, C. M., and Hui, D. Y., 1999, Cholesterol ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am. J. Physiol. 277:G653–G661.

    Google Scholar 

  • Huang, Y., and Hui, D. Y., 1990, Metabolic fate of pancreas-derived cholesterol esterase in intestine. An in vitro study using Caco-2 cells, J. Lipid Res. 31:2029–2037.

    PubMed  CAS  Google Scholar 

  • Huang, Y., and Hui, D. Y., 1991, Cholesterol esterase biosynthesis in rat pancreatic AR42J cells. Post-transcriptional activation by gastric hormones, J. Biol. Chem. 266:6720–6725.

    PubMed  CAS  Google Scholar 

  • Huang, Y., and Hui, D. Y., 1994, Synergistic effects of bombesin and cholecystokinin on cholesterol esterase biosynthesis and secretion by AR42J cells, Arch. Biochem. Biophys. 310:54–59.

    Article  PubMed  CAS  Google Scholar 

  • Hui, D. Y., and Kissel, J .A., 1990, Sequence identity between human pancreatic cholesterol esterase and bile saltstimulated milk lipase, FEBS Letters. 276:131–134.

    Article  PubMed  CAS  Google Scholar 

  • Hui, D. Y., Hayakawa, K., and Oizumi, J., 1993, Lipoamidase activity in normal and mutagenized pancreatic cholesterol esterase (bile salt-stimulated lipase), Biochem. J. 291:65–69.

    PubMed  CAS  Google Scholar 

  • Jacobson, P. W., Wiesenfeld, P. W., Gallo, L. L., Tate, R. L., and Osborne, J. C., 1990, Sodium cholate-induced changes in the conformation and activity of rat pancreatic cholesterol esterase. J. Biol. Chem. 265:515–521.

    PubMed  CAS  Google Scholar 

  • Jorgensen, M. H., Hernell, O., Lund, P., Holmer, G., and Michaelsen, K. F., 1996, Visual acuity and erythrocyte docosahexaenoic acid status in breast fed and formula fed term infants during the first four months of life, Lipids 31:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Kissel, J. A., Fontaine, R. N., Turck, C., Brockman, H. L., and Hui, D.Y., 1989, Molecular cloning and expression of cDNA for rat pancreatic cholesterol esterase, Biochim. Biophys. Acta 1006:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, M., Yokokawa, K., Yasunari, K., Minami, M., Kano, H., Hanehira, T., and Yoshikawa, J., 1998, Induction by lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration, Circulation 98:353–359.

    Article  PubMed  CAS  Google Scholar 

  • Koletzko, B., Edenhofer, S., Lipowsky, G., and Reinhardt, D., 1995, Effects of a low birthweight infant formula containing human milk levels of docosahexaenoic and arachidonic acids, J. Ped. Gastroenterol. Nutrit. 21:200–208.

    Article  CAS  Google Scholar 

  • Krause, B. R., Sliskovic, D. R., Anderson, M., and Homan, R., 1998, Lipid-lowering effects of WAY-121,898, an inhibitor of pancreatic cholesteryl ester hydrolase, Lipids 33:489–498.

    Article  PubMed  CAS  Google Scholar 

  • Kyger, E. M., Wiegand, R. C., and Lange, L. G., 1989, Cloning of the bovine pancreatic cholesterol esterase/lysophospholipase, Biochem. Biophys. Res. Commun. 164:1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Lechene de la Porte, P., Abouakil, N., Lafont, H., and Lombardo, D., 1987, Subcellular localization of cholesterol ester hydrolase in the human intestine, Biochim. Biophys. Acta 920:237–246.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., andHui, D. Y., 1997, Modified low density lipoprotein enhances the secretion of bile salt-stimulated cholesterol esterase by human monocyte-macrophages. Species-specific difference in macrophage cholesteryl ester hydrolase, J. Biol. Chem. 272:28666–28671.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., and Hui, D. Y., 1998, Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells, Biochem. J. 329:675–679.

    PubMed  CAS  Google Scholar 

  • Lopez-Candales, A., Bosner, M. S., Spilburg, C. A., and Lange, L. G., 1993, Cholesterol transport function of pancreatic cholesterol esterase: Directed sterol uptake and esterification in enterocytes, Biochem.32:12085–12089.

    Article  CAS  Google Scholar 

  • Mackay, K., and Lawn, R. M., 1995, Characterization of the mouse pancreatic/mammary gland cholesterol esterase-encoding cDNA and gene,Gene 165:255–259.

    Article  PubMed  CAS  Google Scholar 

  • McKean, M. L., Commons, T. J., Berens, M. S., Hsu, P. L., Ackerman, D. M., Steiner, K. E., and Adelman, S. J., 1992, Effects of inhibitors of pancreatic cholesterol ester hydrolase (PCEH) on 14C-cholesterol absorption in animal models, FASEB J. 6:A1388.

    Google Scholar 

  • Morgan, C., Stammers, J., Colley, J., Spencer, S. A., and Hull, D., 1998, Fatty acid balance studies in preterm infants fed formula milk containing long-chain polyunsaturated fatty acids (LCP) II, Acta Paediatrica 87:318–324.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg, L., Farooqi, A., Blackberg, L., Duan, R. D., Nilsson, A., and Hernell, O., 1998, Digestion of ceramide by human milk bile salt stimulated lipase, J. Ped. Gastroenterol. Nutrit. 27:560–567.

    CAS  Google Scholar 

  • Pind, S., and Kuksis, A., 1991, Further characterization of a novel phospholipase B (Phospholipase A2-lysophospholipase) from intestinal brush border membranes, Biochem. Cell Biol. 69:346–357.

    Article  PubMed  CAS  Google Scholar 

  • Reue, K., Zambaux, J., Wong, H., Lee, G., Leete, T. H., Ronk, M., Shively, J. E., Sternby, B., Borgstrom, B., Ameis, D., and Schotz, M. G., 1991, cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit, J. Lipid Res. 32:267–276.

    PubMed  CAS  Google Scholar 

  • Rigtrup, K. M., and Ong, D. E., 1992, Aretinyl ester hydrolase activity intrinsic to the brush border membrane of rat small intestine, Biochem. 31:2920–2926.

    Article  CAS  Google Scholar 

  • Rigtrup, K. M., Kakkad, B., and Ong, D. E., 1994a, Purification and partial characterization of a retinyl ester hydrolase from the brush border of rat small intestine mucosa: Probable identity with brush border phospholipase B, Biochem. 33:2661–2666.

    Article  CAS  Google Scholar 

  • Rigtrup, K. M., McEwen, L. R., Said, H. M., and Ong, D. E., 1994b, Retinyl ester hydrolytic activity associated with human intestinal brush border membranes, Am. J. Clin. Nutri. 60:111–116.

    CAS  Google Scholar 

  • Rudd, E. A., and Brockman, H. L., 1984, Pancreatic carboxyl ester lipase (cholesterol esterase), in: Lipases (B. Borgstrom and H. L. Brockman, eds.), Elsevier Science Publishers, Amsterdam, pp. 185–204.

    Google Scholar 

  • Shamir, R., Johnson, W. J., Zolfaghari, R., Lee, H. S., and Fisher, E. A., 1995, Role of bile salt-dependent cholesteryl ester hydrolase in the uptake of micellar cholesterol by intestinal cells, Biochem. 34:6351–6358.

    Article  CAS  Google Scholar 

  • Shamir, R., Johnson, E. J., Morlock-Fitzpatrick, K., Zolfaghari, R., Li, L., Mas, E., Lambardo, D., Morel, D. W., and Fisher, E. A., 1996, Pancreatic carboxyl ester lipase: A circulating enzyme that modifies normal and oxidized lipoproteins in vitro, J. Clin. Invest. 97:1696–1704.

    Article  PubMed  CAS  Google Scholar 

  • Stout, J. S., Sutton, L. D., and Quinn, D. M., 1985, Acylenzyme mechanism and solvent isotope effects for cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate, Biochim. Biophys. Acta 837:6–12.

    Article  PubMed  CAS  Google Scholar 

  • Stromqvist, M., Tornell, J., Edlund, M., Edlund, A., Johansson, T., Lindgren, K., Lundberg, L., and Hansson, L., 1996, Recombinant human bile salt-stimulated lipase: An example of defective O-glycosylation of a protein produced in milk of transgenic mice, Transgenic Res. 5:475–485.

    Article  PubMed  CAS  Google Scholar 

  • Takase, S., Goda, T., and Shinohara, H., 1993, Adaptive changes of intestinal cellular retinol-binding protein, type II following jejunum-bypass operation in the rat, Biochim. Biophys. Acta 1156:223–231.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. S., and Hartsuck, J. A., 1993, Bile salt-activated lipase: a multiple function lipolytic enzyme, Biochim. Biophys. Acta 1166,1–19.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. S., and Johnson, K., 1983, Purification of human milk bile salt-activated lipase, Anal. Biochem. 133:457–461.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. S., Martindale, M. E., King, M. M., and Tang, J., 1989, Bile-salt-activated lipase: Effect on kitten growth rate, Am. J. Clin. Nutr. 49:457–463.

    PubMed  CAS  Google Scholar 

  • Wang, X., Wang, C. S., Tang, J., Dyda, F., and Zhang, X. C., 1997, The crystal structure of bovine bile salt activated lipase: Insights into the bile salt activation mechanism, Structure 5:1209–1218.

    Article  PubMed  CAS  Google Scholar 

  • Watt, S. M., and Simmonds, W. J., 1981, The effect of pancreatic diversion on lymphatic absorption and esterification of cholesterol in the rat, J. Lipid Res. 22:157–165.

    PubMed  CAS  Google Scholar 

  • Williamson, S., Finucane, E., Ellis, H., and Gamsu, H. R., 1978, Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, and phosphorus by preterm infants, Arch. Dis. Child. 53:555–563.

    Article  PubMed  CAS  Google Scholar 

  • Wu, A. L., Bennett Clark, S., and Holt, P. R., 1975 Transmucosal triglyceride transport rates in proximal and distal rat intestine in vivo, J. lipid Res. 16:251–257.

    PubMed  CAS  Google Scholar 

  • Zheng, S., Ee, L., Yao, L., Hui, D. Y., and Tso, P., 1998, A study of the uptake and lymphatic transport of lipid in the mouse, Gastroenterology 114:A916.

    Article  Google Scholar 

  • Zolfaghari, R., Harrison, E. H., Ross, A. C., and Fisher, E. A., 1989, Expression in Xenopus oocytes of rat liver mRNA coding for a bile salt-dependent cholesteryl ester hydrolase, Proc. Natl. Acad. Sci. USA 86:6913–6916.

    Article  PubMed  CAS  Google Scholar 

  • Zolfaghari, R., Harrison, E. H., Han, J. H., Rutter, W. J., and Fisher, E. A., 1992, Tissue and species differences in bile salt-dependent neutral cholesteryl ester hydrolase activity and gene expression, Arteriosclerosis and Thrombosis 12:295–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Howles, P.N., Hui, D.Y. (2001). Cholesterol Esterase. In: Mansbach, C.M., Tso, P., Kuksis, A. (eds) Intestinal Lipid Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1195-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1195-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5435-2

  • Online ISBN: 978-1-4615-1195-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics