Advertisement

The Autocorrelation, the Spectrum, and Phase Retrieval

  • Rick Trebino
  • Erik Zeek

Abstract

If, to measure a pulse, it’s sufficient to measure its intensity and phase in either the time or frequency domains, then it’s natural to ask just what measurements can, in fact, be made in each of these domains. And the answer, until recently, was the autocorrelation and spectrum.

Keywords

Pulse Length Pulse Intensity Ultrashort Pulse Blaschke Product Ultrashort Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maier, M., W. Kaiser, and J.A. Giordmaine, Phys. Rev. Lett., 1966.17: p. 1275.ADSCrossRefGoogle Scholar
  2. 2.
    Giordmaine, J. A., et al., Two-Photon Excitation of Fluorescence By Picosecond Light Pulses. Applied Physics Letters, 1967.11(7): p. 216–18.ADSCrossRefGoogle Scholar
  3. 3.
    Ippen, E.P. and C.V. Shank, Ultrashort Light Pulses—Picosecond Techniques and Applications, ed. S.L. Shapiro. 1977, Berlin: Springer-Verlag.Google Scholar
  4. 4.
    Stark, H., ed. Image Recovery: Theory and Application. 1987, Academic Press: Orlando.MATHGoogle Scholar
  5. 5.
    Akutowicz, E.J., On the Determination of the Phase of a Fourier Integral, I. Trans. Amer. Math. Soc, 1956. 83(September): p. 179–92.MathSciNetMATHGoogle Scholar
  6. 6.
    Akutowicz, E.J., On the Determination of the Phase of a Fourier Integral, II. Trans. Amer. Math. Soc, 1957. 84: p. 234–8.MathSciNetGoogle Scholar
  7. 7.
    Sala, K.L., G.A. Kenney-Wallace, and G.E. Hall, CW Autocorrelation Measurements of Picosecond Laser Pulses. IEEE Journal of Quantum Electronics, 1980.16(9): p. 990–6.ADSCrossRefGoogle Scholar
  8. 8.
    Rayner, D.M., P.A. Hackett, and C. Willis, Ultraviolet Laser, Short Pulse-Width Measurement by Multiphoton Ionization Autocorrelation. Review of Scientific Instruments, 1982. 53(4): p. 537–8.ADSCrossRefGoogle Scholar
  9. 9.
    Kintzer, E.S. and C. Rempel, Near-Surface Second-Harmonic Generation for Autocorrelation Measurements in the UV. Applied Physics B, 1987. 42: p. 91–5.CrossRefGoogle Scholar
  10. 10.
    Bourne, O.L. and A.J. Alcock, Ultraviolet and Visible Single-Shot Autocorrelator Based on Multiphoton Ionization. Review of Scientific Instruments, 1986. 57(12): p. 2979–82.ADSCrossRefGoogle Scholar
  11. 11.
    Dadap, J.I., et al., Two-Photon Absorption in Diamond and Its Application to Ultraviolet Femtosecond Pulsewidths Measurement. OL, 1991.16(7): p. 499–501.CrossRefGoogle Scholar
  12. 12.
    Dixon, G.J., Advanced techniques measure ultrashort pulses. Laser Focus World, 1997. 33(9): p. 99–102, 104–5.Google Scholar
  13. 13.
    Hutchinson, M.H.R., et al., Measurement of 248-nm, Subpicosecond Pulse Durations by Two-Photon Fluorescence of Xenon Excimers. Optics Letters, 1987.12(2): p. 102–4.ADSCrossRefGoogle Scholar
  14. 14.
    Tünnermann, M.H.R., et al., Single-Shot Autocorrelator for KrF Subpicosecond Pulses Based on Two-Photon Fluorescence of Cadmium Vapor at l = 508 nm. OL, 1991.16(6): p. 402–4.CrossRefGoogle Scholar
  15. 15.
    Wyatt, R. and E.E. Marinero, Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration. Applied Physics, 1981. 25: p. 297–301.ADSCrossRefGoogle Scholar
  16. 16.
    Ishida, Y., K. Naganuma, and T. Yajima, Self-Phase Modulation in Hybridly Mode-Locked CW Dye Lasers. J. Quantum Electronics, 1985. 21(1): p. 69–77.ADSCrossRefGoogle Scholar
  17. 17.
    Trebino, R., E.K. Gustafson, and A.E. Siegman, Fourth-Order Partial-Coherence Effects in the Formation of Integrated-Intensity Gratings with Pulsed Light Sources. J. Opt. Soc. Amer. B, 1986. 3: p. 1295.ADSCrossRefGoogle Scholar
  18. 18.
    Birmontas, A., et al., Determination of the duration of fluctuating picosecond optical pulses. Soviet Journal of Quantum Electronics, 1982.12(6): p. 792–4.CrossRefGoogle Scholar
  19. 19.
    Bracewell, R.N., The Fourier Transform and Its Applications. 2nd ed. 1986, New York: McGraw-Hill.Google Scholar
  20. 20.
    Diels, J.C. and W. Rudolph, Ultrashort Laser Pulse Phenomena. 1996, San Diego: Academic Press.Google Scholar
  21. 21.
    Penman, Z.E., et al., Experimental comparison of conventional pulse characterisation techniques and second-harmonic-generation frequency-resolved optical gating. Optics Communications, 1998. 155(4–6): p. 297–300.ADSCrossRefGoogle Scholar
  22. 22.
    Etchepare, J., G. Grillon, and A. Orszag, Third Order Autocorrelation Study of Amplified Subpicosecond Laser Pulses. IEEE Journal of Quantum Electronics, 1983.19(5): p. 775–8.ADSCrossRefGoogle Scholar
  23. 23.
    Janszky, J. and G. Corradi, Full Intensity Profile Analysis of Ultrashort Laser Pulses Using Four-Wave Mixing or Third Harmonic Generation. Optics Communications, 1986. 60(4): p. 251–6.ADSCrossRefGoogle Scholar
  24. 24.
    Sarukura, N., et al., Single-Shot Measurement of Subpicosecond KrF Pulse Width by Three-Photon Fluorescence oftheXeF Visible Transition. Optics Letters, 1988.13(11): p. 996–8.ADSCrossRefGoogle Scholar
  25. 25.
    Schulz, H., et al., Measurement of Intense Ultraviolet Subpicosecond Pulses Using Degenerate Four-Wave Mixing. IEEE Journal of Quantum Electronics, 1989.25(12): p. 2580–5.ADSCrossRefGoogle Scholar
  26. 26.
    Fischer, R., J. Gauger, and J. Tilgner, Fringe Resolved Third-Order Autocorrelation Functions. Proceedings of American Institute of Physics Conference, 1988.172: p. 727–9.ADSGoogle Scholar
  27. 27.
    Levine, A.M., et al., Induced-Grating Autocorrelation of Ultrashort Pulses in a Slowly responding Medium. J. Opt. Soc. Amer. B, 1994.11(9): p. 1609–18.ADSCrossRefGoogle Scholar
  28. 28.
    Trebino, R., et al., Chirp and Self-Phase Modulation in Induced-Grating Autocorrelation Measurements of Ultrashort Pulses. Opt. Lett., 1990.15: p. 1079–81.ADSCrossRefGoogle Scholar
  29. 29.
    Johnson, A.M., et al., Microwatt Picosecond Pulse Autocorrelator Using Photorefractive GaAs.Cr, in OSA Annual Meeting. 1988, Optical Society of America: Washington, D.C.Google Scholar
  30. 30.
    Lohmann, A.W., G. Weigelt, and B. Wirnitzer, Speckle Masking in Astronomy: Triple Correlation Theory and Applications. Applied Optics, 1983. 22(24): p. 4028–37.ADSCrossRefGoogle Scholar
  31. 31.
    Lohmann, A.W. and B. Wirnitzer, Triple Correlations. IEEE Proceedings, 1984. 72(7): p. 889–901.CrossRefGoogle Scholar
  32. 32.
    Paulter, N.G.J, and A.K. Majumdar, A New Triple Correlator Design for the Measurement of Ultrashort Laser Pulses. Optics Communications, 1991. 81(1,2): p. 95–100.ADSCrossRefGoogle Scholar
  33. 33.
    Paulter, N.G.J, and A.K. Majumdar, A New Triple Correlation Technique for Measuring Ultrashort Laser Pulses. Review of Scientific Instruments, 1991. 62(3): p. 567–78.ADSCrossRefGoogle Scholar
  34. 34.
    Kakarala, R. and G.J. Iverson, Uniqueness of results for multiple correlations of periodic functions. Journal of the Optical Society of America A, 1993.10(7): p. 1517–28.ADSCrossRefGoogle Scholar
  35. 35.
    Peatross, J. and A. Rundquist, Temporal Decorrelation of short laser pulses. Journal of the Optical Society of America B, 1998.15(1): p. 216–22.ADSCrossRefGoogle Scholar
  36. 36.
    Gerchberg, R.W. and W.O. Saxton, A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik, 1972. 35: p. 237–46.Google Scholar
  37. 37.
    Saxton, W.O., Computer Techniques for Image Processing in Electron Microscopy. 1978, New York: Academic Press.Google Scholar
  38. 38.
    Chung, J.-H. and A.M. Weiner, Ambiguity of ultrashort pulse shapes retrieved from the intensty autocorrelation and power spectrum. IEEE Journal on Selected Topics in Quantum Electronics, 2001. 7(4): p. 656–66.CrossRefGoogle Scholar
  39. 39.
    Diels, J.C, J.J. Fontaine, and F. Simoni, Phase Sensitive Measurements of Femtosecond Laser Pulses From a Ring Cavity, in Proceedings of the International Conference on Lasers. 1983, STS Press: McLean, VA. p. 348–55.Google Scholar
  40. 40.
    Diels, J.C.M., et al., Control and Measurement of Ultrashort Pulse Shapes (in Amplitute and Phase) with Femtosecond Accuracy. Applied Optics, 1985. 24(9): p. 1270–82.ADSCrossRefGoogle Scholar
  41. 41.
    Diels, J.C., Measurement Techniques With Mode-Locked Dye Laser, in Ultrashort Pulse Spectroscopy and Applications, Proceedings of SPIE. 1985, SPIE Press: Bellingham. p. 63–70.Google Scholar
  42. 42.
    Yan, C. and J.C. Diels, Amplitude and Phase Recording of Ultrashort Pulses. Journal of the Optical Society of America B, 1991. 8(6): p. 1259–63.ADSCrossRefGoogle Scholar
  43. 43.
    Diels, J.C.M., et al. The Femto-nitpicker. in Conference on Lasers & Electro-Optics. 1987.Google Scholar
  44. 44.
    Le Blanc, S.P., G. Szabo, and R. Sauerbrey, Femtosecond Single-Shot Phase-Sensitive Autocorrelator for the Ultraviolet. Optics Letters, 1991.16(19): p. 1508–10.ADSCrossRefGoogle Scholar
  45. 45.
    Szabo, G., Z. Bor, and A. Muller, Phase-Sensitive Single-Pulse Autocorrelator for Ultrashort Laser Pulses. Optics Letters, 1988.13(9): p. 746–8.ADSCrossRefGoogle Scholar
  46. 46.
    Naganuma, K., K. Mogi, and H. Yamada, Time Direction Determination of Asymmetric Ultrashort Optical Pulses from Second-Harmonic Generation Autocorrelation Signals. APL, 1989. 54(13): p. 1201–2.Google Scholar
  47. 47.
    Naganuma, K., K. Mogi, and H. Yamada, General Method for Ultrashort Light Pulse Chirp Measurement. IEEE J. Quant. Electron., 1989. 25(6): p. 1225–33.ADSCrossRefGoogle Scholar
  48. 48.
    Naganuma, K., K. Mogi, and H. Yamada, Group-Delay Measurement Using the Fourier Transform of an Interferometric Cross Correlation Generated by White Light. Optics Letters, 1990.15(7): p. 393–5.ADSCrossRefGoogle Scholar
  49. 49.
    Brun, A., et al., Single-Shot Characterization of Ultrashort Light Pulses. J. Phys. D., 1991. 24: p. 1225–33.ADSCrossRefGoogle Scholar
  50. 50.
    Szatmári, S., F.P. Schäfer, and J. Jethwa, A Single-Shot Autocorrelator for the Ultraviolet with a Variable Time Window. Review of Scientific Instruments, 1990. 61(3): p. 998–1003.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Rick Trebino
  • Erik Zeek

There are no affiliations available

Personalised recommendations