Skip to main content
  • 2905 Accesses

Abstract

The great thing about ultrashort laser pulses is that all their energy is crammed into a very short time, so they have very high power and intensity. A typical ultrashort pulse from a Ti: Sapphire laser oscillator has a paltry nanojoule of energy, but it’s crammed into 100fs, so its peak power is 10,000 Watts. And it can be focused to a micron or so, yielding an intensity of 1012 W/cm2! And it’s easy to amplify such pulses by a factor of 106!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bloembergen, Nonlinear Optics, World Scientific Pub. Co., 1996 (original edition: 1965).

    Book  MATH  Google Scholar 

  2. R.W. Boyd, Nonlinear Optics, Academic Press, 1992.

    Google Scholar 

  3. P. Butcher and D. Cotter, The Elements of Nonlinear Optics Cambridge University Press, 1991.

    Google Scholar 

  4. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, Academic Press, 1996.

    Google Scholar 

  5. F.A. Hopf and G.I. Stegeman, Applied Classical Electrodynamics: Nonlinear Optics, Krieger Pub. Co., reprinted 1992.

    Google Scholar 

  6. D.L. Mills, Nonlinear Optics: Basic Concepts, 2nd ed., Springer Veriag, 1998.

    MATH  Google Scholar 

  7. G.G. Gurzadian et al., Handbook of Nonlinear Optical Crystals, 3rd ed, Springer Verlag, 1999.

    Google Scholar 

  8. K.-S. Ho, S.H. Liu and G.S. He, Physics of Nonlinear Optics, World Scientific Pub. Co., 2000.

    Google Scholar 

  9. E.G. Sauter, Nonlinear Optics, Wiley-Interscience, 1996.

    Google Scholar 

  10. Y.R. Shen, The Principles of Nonlinear Optics, Wiley-Interscience, 1984.

    Google Scholar 

  11. A. Yariv, Quantum Electronics, 3rd ed. Wiley, 1989.

    Google Scholar 

  12. F. Zernike and J. Midwinter, Applied Nonlinear Optics, Wiley-Interscience, 1973 (out of print).

    Google Scholar 

  13. H.J. Eichler, et al., Laser-Induced Dynamic Gratings, Springer-Verlag, 1986.

    Google Scholar 

  14. Christian Rahlff, Opt. Phot. News, 8, 4, p. 64 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trebino, R., Buck, J. (2000). Nonlinear Optics. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics