Skip to main content

Feature Tracking with Skeleton Graphs

  • Chapter
Book cover Data Visualization

Abstract

A way to analyse large time-dependent data sets is by visualization of the evolution of features in these data. The process consists of four steps: feature extraction, feature tracking, event detection, and visualization.

In earlier work, we described the execution of the tracking process by means of basic attributes like position and size, gathered in ellipsoid feature descriptions. Although these basic attributes are accurate and provide good tracking results, they provide little shape information about the features. In other work, we presented a better way to describe the shape of the features by skeleton attributes.

In this paper, we investigate the role that the skeleton graphs can play in feature tracking and event detection. The extra shape information allows detection of certain events much more accurately, and also allows detection of new types of events: changes in the topology of the feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnaud, Y., Debois, M., and Maizi, J. (1992). Automatic Tracking and Characterization of African Convective Systems on Meteosat Pictures. J. of Appl. Meteorology, 31:443–453.

    Article  Google Scholar 

  2. Ballard, D. and Brown, C. (1982). Computer Vision. Prentice-Hall.

    Google Scholar 

  3. Kalivas, D. and Sawchuk, A. (1991). A Region Matching Motion Estimation Algorithm. CVGIP: Image Understanding, 54(2):275–288.

    Article  MATH  Google Scholar 

  4. Messmer, B. and Bunke, H. (1998a). Error-correcting graph isomorphism using decision trees. International Journal of Pattern Recognition and Artificial Intelligence, 12(6):721–742.

    Article  Google Scholar 

  5. Messmer, B. and Bunke, H. (1998b). A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5):493–505.

    Article  Google Scholar 

  6. Messmer, B. and Bunke, H. (1999). A decision tree approach to graph and subgraph isomorphism detection. Pattern Recognition, 32(12): 1979–1998.

    Article  Google Scholar 

  7. Reinders, F., Jacobson, M., and Post, F. (2000). Skeleton Graph Generation for Feature Shape Description. In de Leeuw, W. and van Liere, R., editors, Data Visualization 2000, pages 73–82. Springer Verlag.

    Chapter  Google Scholar 

  8. Reinders, F., Post, F., and Spoelder, H. (1999). Attribute-Based Feature Tracking. In Gröller, E., Löffelmann, H., and Ribarsky, W., editors, Data Visualization ’99, pages 63–72. Springer Verlag.

    Chapter  Google Scholar 

  9. Reinders, F., Post, F., and Spoelder, H. (2001). Visualization of Time-Dependent Data using Feature Tracking and Event Detection. The Visual Computer, 17(1):55–71.

    Article  MATH  Google Scholar 

  10. Reinders, F., Spoelder, H., and Post, F. (1998). Experiments on the Accuracy of Feature Extraction. In Bartz, D., editor, Visualization in Scientific Computing ’98, pages 49–58. Springer Verlag.

    Chapter  Google Scholar 

  11. Samtaney, R., Silver, D., Zabusky, N., and Cao, J. (1994). Visualizing Features and Tracking Their Evolution. IEEE Computer, 27(7):20–27.

    Article  Google Scholar 

  12. Sethi, I., Patel, N., and Yoo, J. (1994). A General Approach for Token Correspondence. Pattern Recognition, 27(12):1775–1786.

    Article  Google Scholar 

  13. Silver, D. and Wang, X. (1996). Volume Tracking. In Yagel, R. and Nielson, G., editors, Proc. Visualization ’96, pages 157–164. IEEE Computer Society Press.

    Google Scholar 

  14. Silver, D. and Wang, X. (1998). Tracking Scalar Features in Unstructured DataSets. In Ebert, D., Hagen, H., and Rushmeier, H., editors, Proc. Visualization ’98, pages 79–86. IEEE Computer Society Press.

    Google Scholar 

  15. van Walsum, T, Post, F., Silver, D., and Post, F. (1996). Feature Extraction and Iconic Visualization. IEEE Trans, on Visualization and Computer Graphics, 2(2):111–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vrolijk, B., Reinders, F., Post, F.H. (2003). Feature Tracking with Skeleton Graphs. In: Post, F.H., Nielson, G.M., Bonneau, GP. (eds) Data Visualization. The Springer International Series in Engineering and Computer Science, vol 713. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1177-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1177-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5430-7

  • Online ISBN: 978-1-4615-1177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics