Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 112))

Abstract

One of the greatest obstacles in the effective chemotherapy of neoplastic disease is the presence of tumor chemoresistance. In some instances, a tumor can be intrinsically resistant to chemotherapy or, in other cases, develop resistance during the course of antineoplastic treatment. This acquired resistance is thought to occur through the selection of a subpopulation of resistant tumor cells as the tumor is exposed to chemotherapy. To complicate chemotherapeutic drug selection, it has been found that once a tumor demonstrates resistance to one class of drugs, it will often be resistant to other classes that share structural or functional homology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tew K, Colvin M, Chabner B. Alkylating agents. In: Cancer Chemotherapy and Biotherapy: Principles and Practice, BA Chabner, DL Longo (eds.), Lippincott-Raven, Philadelphia, PA, 1996.

    Google Scholar 

  2. Hansson J, Lewensohn R, Ringborg U, Nilsson B. Formation and removal of DNA cross-links induced by melphalan and nitrogen mustard in relation to drug-induced cytotoxicity in human melanoma cells. Cancer Res, 47:2631–2637, 1987.

    PubMed  CAS  Google Scholar 

  3. Pu Q, Bezwoda W. Induction of alkylator (melphalan) resistance in HL60 cells is accompanied by increased levels of topoisomerase II expression and function. Mol Pharmacol, 56:147–153, 1999.

    PubMed  CAS  Google Scholar 

  4. Bedford P, Fichtinger-Schepman AMJ, Hill BT. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines. Cancer Res, 48:3019–3024, 1988.

    PubMed  CAS  Google Scholar 

  5. Redwood WR, Colvin M. Transport of melphalan by sensitive and resistant L1210 cells. Cancer Res, 40:1144–1149, 1980.

    PubMed  CAS  Google Scholar 

  6. Richon VM, Schulte N, Eastman A. Multiple mechanisms of resistance to cisdiamminedichloroplatinum (II) in murine leukemia L1210 cells. Cancer Res, 47:2056–2061, 1987.

    PubMed  CAS  Google Scholar 

  7. Harrison SD Jr, Brockman RW, Trader MWet al.Cross resistance of drug-resistant murine leukemias to deoxyspergualin (NSC 356894) in vivo. Invest New Drugs 5:345–351, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Ozols RF, Masuda H, Hamilton TC. Mechanisms of cross-resistance between radiation and antineoplastic drugs. NCI Monogr, 6:159–165, 1988.

    PubMed  Google Scholar 

  9. McGown AT, Fox BW. A proposed mechanism of resistance to cyclophosphamide and phosphoramide mustard in a Yoshida cell line in vitro. Cancer Res, 17:223–226, 1986.

    CAS  Google Scholar 

  10. Schecter RL, Alaoui-Jamali MA, Batist G. Glutathione S-transferase in chemotherapy resistance and in carcinogenesis. Biochem Cell Biol, 70:349–353, 1991.

    Article  Google Scholar 

  11. Tew, K. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res, 54:4313–4320, 1994.

    PubMed  CAS  Google Scholar 

  12. Meister A. Metabolism and function of glutathione. In: Glutathione: Chemical, Biochemical and Medical Aspects, D Dolphin, A Avramovich, R Poulson (eds.), John Wiley and Sons, New York, NY, 1989.

    Google Scholar 

  13. Kosower NS, Kosower ES. The glutathione-glutathione disulfide system. In: Free Radicals in Biology, WA Pryor (ed.), Academic Press, New York, NY, 1976.

    Google Scholar 

  14. Kosower NS, Kosower ES. Glutathione metabolism and function. Annu Rev Biochem, 52:711–760, 1983.

    Article  Google Scholar 

  15. Hanawalt PC, Cooper PK, Ganesan AK. DNA repair in bacterial and mammalian cells. Annu Rev Biochem, 48:783–836, 1979.

    Article  PubMed  CAS  Google Scholar 

  16. Masuda H, Ozols RF, Lai GM. Increased DNA repair as a mechanism of acquired resistance to cis-diamminedichloroplatinum (II) in human ovarian cancer cell lines. Cancer Res, 48:5713–5716, 1988.

    PubMed  CAS  Google Scholar 

  17. Luperchio S, Tamir S, Tannenbaum SR. NO-induced oxidative stress and glutathione metabolism in rodent and human cells. Free Radic Biol Med, 21:513–519, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Tu Z, Anders MW. Identification of an important cysteine residue in human glutamatecysteine ligase catalytic subunit by site-directed mutagenesis. Biochem J, 336:675–680, 1998.

    PubMed  CAS  Google Scholar 

  19. Aslund F, Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell, 96:751–753, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science, 279:1718–1721, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ. Constitutive and beta-naphthoflavoneinduced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem, 272:7445–7454, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Wild A, Moinova H, Mulcahy T. Regulation of y-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem, 274:33627–33636, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Wild AC, Mulcahy T. Regulation of y-glutamylcysteine synthetase subunit gene expression: insight into transcriptional control of antioxidant defenses. Free Radic Res, 32:281–301, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Kondo T, Higashiyama Y, Goto Set al.Regulation of y-glutamylcysteine synthetase expression in response to oxidative stress. Free Radic Res, 31:325–334, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Walsh AC, Li W, Rosen DR, Lawrence DA. Genetic mapping of GLCLC, the human gene encoding the catalytic subunit of y-glutamylcysteine synthetase, to chromosome band 6p12 and characterization of a polymorphic trinucleotide repeat within its 5’ untranslated region. Cytognent Cell Genet, 75:14–16, 1996.

    Article  CAS  Google Scholar 

  26. Beutler E, Gelbart T, Kondo T, Matsunaga AT. The molecular basis of a case of yglutamylcysteine synthetase deficiency. Blood, 94:2890–2894, 1999.

    PubMed  CAS  Google Scholar 

  27. Ristoff E, Augustson C, Geissler Jet al.A missense mutation in the heavy subunit of yglutamylcysteine synthetase gene causes hemolytic anemia. Blood, 95:2193–2197, 2000.

    PubMed  CAS  Google Scholar 

  28. Booth J, Boyland E, Sims P. An enzyme from rat liver catalysing conjugation with glutathione. Biochem J, 79:516–524, 1961.

    PubMed  CAS  Google Scholar 

  29. Hubatsch I, Riddrestrom M, Mannervik B. Human glutathione transferase A4–4: an Alpha class enzyme with high catalytic efficiency in the conjugation of 4- hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J, 330:175–179, 1998.

    PubMed  CAS  Google Scholar 

  30. Baez S, Segura-Aguilar J, Widersten Met al.Glutathione transferases catalyse the detoxification of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J, 324:25–28, 1997.

    PubMed  CAS  Google Scholar 

  31. Berhane K, Widersten M, Engstrom Aet al.Detoxification of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci. USA, 91:1480–1484, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Mannervik B, Alin P, Guthenberg Cet al.Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA, 82:7202–7206, 1995.

    Article  Google Scholar 

  33. Morgenstern R, Guthenburg C, Depierre JW. Microsomal glutathione S-transferase. Purification, initial characterisation and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C. Eur J Biochem, 128:243–248, 1982.

    CAS  Google Scholar 

  34. Jakobsson PJ, Mancini JA, Ford-Hutchinson AW. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase. J Biol Chem, 271:22203–22210, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. DeJong JL, Morgenstern R, Jomvall Het al.Gene expression of rat and human microsomal glutathione S-transferases. J Biol Chem, 263:8430–8436, 1998.

    Google Scholar 

  36. Lam BK, Penrose JF, Freeman GJ, Austen KF. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci USA, 91:7663–7667, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Arca P, Hardisson C, Suarez JE. Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother, 34:844–848, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Mannervik B, Danielson UH. Glutathione transferases-structure and catalytic activities. Crit Dev Biochem, 23:283–337, 1998.

    Article  Google Scholar 

  39. Bolton MG, Colvin OM, Hilton J. Specificity of isozymes of murine hepatic glutathione S-transferase for the conjugation of glutathione with L-phenylalanine mustard. Cancer Res, 51:2410–2414, 1991.

    PubMed  CAS  Google Scholar 

  40. Yuan Z-M, Fenselau C, Dulik DM, Martin Wet al.Laser desorption electron impact: application to a study of the mechanism of conjugation of glutathione and cyclophosphamide. Anal Chem, 62:868–870, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Ciaccio PJ, Tew KD, LaCreta FP. The spontaneous and glutathione S-transferase mediated reaction of chlorambucil with glutathione. Cancer Commun, 2:279–286, 1990.

    PubMed  CAS  Google Scholar 

  42. Zimniak P, Nanduri B, Pikula Set al.Naturally occurring human glutathione Stransferase GSTP1–1 isoforms with isoleucine and valine in position 104 differ in enzymatic properties. Eur J Biochem, 224:893–899, 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Coles B, Ketterer B. The role of glutathione and glutathione transferases in chemical carcinogenesis. Biochem Mol Biol, 25:47–70, 1990.

    Article  CAS  Google Scholar 

  44. Cole SPC, Bhardwaj G, Gerlach JHet al.Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258:1650–1654, 1992.

    Article  PubMed  CAS  Google Scholar 

  45. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem, 17:463–468, 1992.

    Article  CAS  Google Scholar 

  46. Leier I, Jedlitschky G, Buchholz Uet al.ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J, 314:433–437, 1996.

    PubMed  CAS  Google Scholar 

  47. Jedlitschky G, Leier I, Buchholz Uet al.Transport of glutathione, glucuronate and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res, 56:988–994, 1996.

    PubMed  CAS  Google Scholar 

  48. Rappa G, Finch RA, Sartorelli AC, Lorico A. New insights into the biology and pharmacology of the multidrug resistance protein (MRP) from gene knockout models. Biochem Pharmacol, 58:557–562, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. Dulik DM, Fenselau C, Hilton J. Characterization of melphalan-glutathione adducts whose formation is catalysed by glutathione S-transferases. Biochem Pharmacol, 35:3404–3409, 1986.

    Article  Google Scholar 

  50. Zhang K, Wong KP. Glutathione conjugation of chlorambucil: measurement and modulation by plant polyphenols. Biochem J, 325:417–422, 1997.

    PubMed  CAS  Google Scholar 

  51. Gamcsik MP, Hamill TG, Colvin OM. NMR studies of conjugation of mechlorethamine with glutathione. J Med Chem, 33:1009–1014, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Dirven HA, Megens I, Oudshoorn MJet at.Glutathione conjugation of cytostatic drug ifosfamide and the role of human glutathione S-transferases. Chem Res Toxicol, 8:979–986, 1995.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang K, Mack P, Wong K.P. Glutathione-related mechanisms in cellular resistance to anticancer drugs (review). Int J Oncol, 12:871–882, 1998.

    PubMed  CAS  Google Scholar 

  54. Kotoh S, Naito S, Yokomizo Aet al.Enhanced expression of y-glutamylcysteine synthetase and glutathione S-transferase genes in cisplatin-resistant bladder cancer cells with multidrug resistance phenotype. J Urol, 157:1054–1058, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Saburi Y, Nakagawa M, Ono Met al.Increased expression of glutathione S-transferase gene in cis-diamminedichloroplatinum(II)-resistant variants of a Chinese hamster ovary cell line. Cancer Res, 49:7020–7025, 1989.

    PubMed  CAS  Google Scholar 

  56. Goto S, lida T, Oka Met al.Overexpression of glutathione S-transferase 7C enhances the adduct formation of cisplatin with glutathione in human cancer cells. Free Radic Res, 31:549–558, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Ban N, Takahashi Y, Takayama Tet al.Transfection of glutathione 5-transferase (GST)-it antisense complimentary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan and etoposide. Cancer Res, 56:3577–3582, 1996.

    PubMed  CAS  Google Scholar 

  58. Nakagawa K, Saijo N, Tsuchida Set al.Glutathione S-transferase IL as a determinant of drug resistance in transfectant cell lines. J Biol Chem, 265:4296–4301, 1990.

    PubMed  CAS  Google Scholar 

  59. Moscow JA, Townsend AJ, Cowan KH. Elevation of rc class glutathione S-transferase activity in human breast cancer cells by transfection of the GST:ir gene and its effect to sensitivity to toxins. Mol Pharmacol, 36:22–28, 1989.

    PubMed  CAS  Google Scholar 

  60. Schecter RL, Alaoui-Jamali M, Woo Aet al.Expression of a rat glutathione Stransferase complimentary DNA in rat mammary carcinoma cells: impact upon alkylator-induced toxicity. Cancer Res, 53:4900–4906, 1993.

    PubMed  CAS  Google Scholar 

  61. Greenbaum M, Letourneau S, Assar Het a/. Retrovirus-mediated gene transfer of rat glutathione 5-transferase Yc confers alkylating drug resistance in NIH 3T3 mouse fibroblasts. Cancer Res, 54:4442–4447, 1994.

    PubMed  CAS  Google Scholar 

  62. Doroshow JH, Metz MZ, Matsumoto Let al.Transduction of NIH 3T3 cells with a retrovirus carrying both human MDRI and glutathione S-transferase it produces broad-range multidrug resistance. Cancer Res, 55:4073–4078, 1995.

    PubMed  CAS  Google Scholar 

  63. Godwin AK, Meister A, O’Dwyer PJet al.High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Pro Natl Acad Sci USA, 89:3070–3074, 1992.

    Article  CAS  Google Scholar 

  64. Yao XS, Godwin AK, Johnson SWet al.Evidence for altered regulation of yglutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatinresistant human ovarian cancer cell lines. Cancer Res, 55:4367–4374, 1995.

    PubMed  CAS  Google Scholar 

  65. Mulcahy RT, Untawale S, Gipp JJ. Transcriptional up-regulation of y-glutamylcysteine synthetase gene expression in melphalan-resistant human prostate carcinoma cells. Mol Pharmacol, 46:909–914, 1994.

    PubMed  CAS  Google Scholar 

  66. Iida T, Mori K, Goto Set al.Co-expression of gamma-glutamylcysteine synthetase subunits in response to cisplatin and doxorubicin in human cancer cells. Int J Canc, 82:405–411, 1999.

    Article  CAS  Google Scholar 

  67. Mulcahy RT, Bailey IIH, Gipp JJ. Transfection of complimentary DNAs for the heavy and light subunits of human y-glutamylcysteine synthetase results in an elevation of intracellular glutathione and resistance to melphalan. Cancer Res, 55:4771–4775, 1995.

    PubMed  CAS  Google Scholar 

  68. Kurokawa H, Ishida T, Nishio Ket al.y-glutamylcysteine synthetase gene overexpression results in increased activity of the ATP-dependent glutathione Sconjugate export pump and cisplatin resistance. Biochem Biophys Res Commun, 216:258–264, 1995.

    Article  PubMed  CAS  Google Scholar 

  69. Ishikawa T, Bao J-J, Yamane Yet al.Coordinated induction of MRP-GS-X pump and yglutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem, 271:14981–14988, 1996.

    Article  PubMed  CAS  Google Scholar 

  70. Ishikawa T, Wright CD, Ishizuka H. GS-X pump is functionally overexpressed in cisdaimminechloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J Biol Chem, 269:29085–29093, 1994.

    PubMed  CAS  Google Scholar 

  71. Kuo MT, Bao JJ, Curley SAet al.Frequent co-ordinated overexpression of the MRP/GS-X pump and y-glutamylcysteine synthetase genes in human colorectal cancers. Cancer Res, 56:3642–3644, 1996.

    PubMed  CAS  Google Scholar 

  72. Ogretmen B, Bahadori H, McCauley MDet al.Co-ordinated over-expression of the MRP and y-glutamylcysteine synthetase genes, but not MDR1, correlates with doxorubicin resistance in human malignant mesothelioma cell lines. Int J Cancer, 75:757–761, 1998.

    Article  PubMed  CAS  Google Scholar 

  73. Morrow CS, Smitherman PK, Diah SKet al.Coordinated action of glutathione Stransferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification. J Biol Chem, 273:20114–20120, 1998.

    Article  PubMed  CAS  Google Scholar 

  74. Zaman GJR, Lankelma J, Tellingen 0et al.Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. PNAS USA, 92:7690–7694, 1995.

    Article  PubMed  CAS  Google Scholar 

  75. Griffith OW. Mechanisms of action, metabolism and toxicity of butathionine sulfoximine and its higher homologues; potent inhibitors of glutathione biosynthesis. J Biol Chem, 257:13704–13708, 1982.

    PubMed  CAS  Google Scholar 

  76. Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med, 27:922–935, 1999.

    Article  PubMed  CAS  Google Scholar 

  77. Griffith OW, Mulcahy RT. The enzymes of glutathione synthesis: y-glutamylcysteine synthetase. In: Advances in Enzymology and Related Areas of Molecular Biology, Volume 73: Mechanism of Enzyme Action, Part A, D Purich (ed.), John Wiley and Sons, New York, NY, 1999.

    Google Scholar 

  78. Kramer RA, Greene K, Ahmad S, Vistica DT. Chemosensitization of L-phenylalanine mustard by the thiol-modulating agent buthionine sulfoximine. Cancer Res, 47:1593–1597, 1987.

    PubMed  CAS  Google Scholar 

  79. O’Dwyer PJ, Hamilton TC, LaCreta FPet al.Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J Clin Oncol, 14:249–256, 1996.

    PubMed  Google Scholar 

  80. Bailey HH, Mulcahy RT, Tutsch KDet al.Phase I clinical trial of intravenous Lbuthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J Clin Oncol, 12:194–205, 1994.

    PubMed  CAS  Google Scholar 

  81. Bailey HH, RippleGTutsch KDet al. Phase I study of continuous-infusion L-S,Rbuthionine sulfoximine with intravenous melphalan. J Natl Cancer Inst, 89:1789–1796, 1997.

    Article  PubMed  CAS  Google Scholar 

  82. O’Dwyer PJ, Hamilton TC, Young RCet al.Depletion of glutathione in normal and malignant human cells in vivo by butathionine sulfoximine: clinical and biochemical results. J Natl Cancer Instit, 84:264–267, 1992.

    Article  Google Scholar 

  83. Hamilton TC, Lai GM, Rothenberg ML. Mechanisms of resistance to alkylating agents and cisplatin. In:Cancer Treatment and Research: Drug Resistance, RF Ozols (ed.), Martinus Nijhoff, Boston, MA, 1989.

    Google Scholar 

  84. Batist G, Schecter RL, Karp Wet al.Effects of BSO infusion on GSH and related proteins in patients with metastatic melanoma. Submitted.

    Google Scholar 

  85. Meister A. Glutathione deficiency produced by inhibition of its synthesis and its reversal; applications in research and therapy. Pharmacol Ther, 51:155–194, 1991.

    Article  PubMed  CAS  Google Scholar 

  86. Anderson ME, Luo J-L. Glutathione therapy: from prodrugs to genes. Sem Liver Dis, 18:415–424, 1998.

    Article  CAS  Google Scholar 

  87. Russo A, Mitchell JB, McPherson SJ, Friedman N. Alteration of bleomycin cytotoxicity by glutathione depletion or elevation. Int J Radiat Oncol Biol Phys, 10:1675–1678, 1983.

    Article  Google Scholar 

  88. Russo A, De Graff W, Friedman N, Mitchell JB. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res, 46:2845–2848, 1986.

    PubMed  CAS  Google Scholar 

  89. Wang T, Chen X, Schecter Ret al.Modulation of glutathione by a cysteine pro-drug enhances in vivo tumor response. J Pharm Exp Ther, 276:1169–1173, 1996.

    CAS  Google Scholar 

  90. Baruchel S, Wang T, Farah Ret al.In vivo selective modulation of tissue glutathione in a rat mammary carcinoma model. Biochem Pharmacol, 50:1499–1502, 1995.

    Article  Google Scholar 

  91. Chen X, Batist G. Sensitization effect of L-2-oxothiazolidine-4-carboxylate on tumor cells to melphalan and the role of 5-oxo-l-prolinase in glutathione modulation in tumor cells. Biochem Pharm, 56:743–749, 1998.

    Article  PubMed  CAS  Google Scholar 

  92. Wellner VP, Anderson ME, Puri RNet al.Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Pro Natl Acad Sci USA, 81:4732–4735, 1984.

    Article  CAS  Google Scholar 

  93. Benson AB. Oltipraz: a laboratory and clinical review. J Cell Biochem, 17F:278–291, 1993.

    Article  Google Scholar 

  94. DCPC Chemoprevention Branch agents under evaluation. September 1990. Prepared under NCI contract NO1-CN-95159–03.

    Google Scholar 

  95. Langouet S, Macheo K, Berthou Fet al.Effects of administration of the chemoprotective agent oltipraz on CYP1A and CYP2B in rat liver and rat hepatocytes in culture. Carcinogenesis, 18:1343–1349, 1997.

    Article  PubMed  CAS  Google Scholar 

  96. Jaitovitch-Groisman I, Fotouhi-Ardakani N, Schecter Ret al.Modulation of glutathione s-transferase alpha by hepatitis B virus and the chemopreventive drug oltipraz. J Biol Chem, 275:33395–33403, 2000.

    Article  PubMed  CAS  Google Scholar 

  97. Ciaccio PJ, Shen H, Kruh GD, Tew KD. Effects of chronic ethacrynic acid exposure on glutathione conjugation and MRP expression in human colon tumor cells. Biochem Biophys Res Commun, 222:111–115, 1996.

    Article  PubMed  CAS  Google Scholar 

  98. Ahokas JT, Nicholls FA, Ravenscroft PJ, Emmerson PJ. Inhibition of purified rat liver glutathione S-transferase isozymes by diuretic drugs. Biochem Pharmacol, 34:2157–2161, 1990.

    Article  Google Scholar 

  99. Ploemen J, van Ommen B, van Bladeren PJ. Inhibition of rat and human glutathione Stransferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol, 40:1631–1635, 1990.

    Article  PubMed  CAS  Google Scholar 

  100. Nagourney RA, Messenger JC, Kern DH, Weisenthal LM. Enhancement of anthracycline and alkylator cytotoxicity by ethacrynic acid in primary cultures of human tissues. Cancer Chemother Pharmacol, 26:318–322, 1990.

    Article  PubMed  CAS  Google Scholar 

  101. Hansson J, Berhane K, Castro VMet al.Sensitization of human melanoma cells to the cytotoxic effect of melphalan by the glutathione transferase inhibitor ethacrynic acid. Cancer Res, 51:94–98, 1991.

    PubMed  CAS  Google Scholar 

  102. Xu BH, Singh SV. Effect of buthionine sulfoximine and ethacrynic acid on cytotoxic activity of mitomycin C analogues BMY 25282 and BMY 25067. Cancer Res, 52:6666–6670, 1992.

    PubMed  CAS  Google Scholar 

  103. Tew KD, Bomber AM, Hoffman SJ. Ethacrynic acid and piripost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res, 48:3622–3625, 1988.

    PubMed  CAS  Google Scholar 

  104. Kuzmich S, Vanderveer LA, Walsh ESet al.Increased levels of glutathione Stransferase IC transcript as a mechanism of resistance to ethacrynic acid. Biochem J, 269:47–54, 1992.

    Google Scholar 

  105. O’Dwyer PJ, LaCreta F, Nash Set al.Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res, 51:6059–6065, 1991.

    PubMed  Google Scholar 

  106. Wijnholds J, Evers R, van Leusden MRet al.Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med, 3:1275–1279, 1997.

    Article  PubMed  CAS  Google Scholar 

  107. Ford JM and Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Phamacol Rev, 42:155–199, 1990.

    CAS  Google Scholar 

  108. Barrand MA, Rhodes T, Center MSet al.Chemosensitization and drug accumulation effects of cyclosporin A, PSC 833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrance protein distinct from P-glycoprotein. Eur J Cancer, 29A:408–415, 1993.

    Article  PubMed  CAS  Google Scholar 

  109. Leier I, Jedlitschky G, Buchholz Uet al.The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related compounds. J Biol Chem, 269:27807–27810, 1994.

    PubMed  CAS  Google Scholar 

  110. Gekeler V, Ise W, Sanders KHet al.The leukotriene LTD4receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun, 208:345–352, 1995.

    Article  PubMed  CAS  Google Scholar 

  111. Endo K, Maehara Y, Ichiyashi Yet al.Multidrug resistance-associated protein expression in clinical gastric carcinoma. Cancer, 7:1681–1687, 1996.

    Google Scholar 

  112. Laird DW, Fistouris P, Batist Get al.Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res, 59:4104–4110, 1999.

    PubMed  CAS  Google Scholar 

  113. Oskar S, Frankhurt D, Sugarbaker EV. Intercellular transfer of drug resistance. Cancer Res, 51:1190–1195, 1991.

    Google Scholar 

  114. Carystinos GD, Alaoui-Jamali MA, Phipps Jet al.Up-regulation of gap junctional intercellular communication and connexin 43 expression by cyclic-AMP and all-transretinoic acid is associated with glutathione depletion and chemosensitivity in neuroblastoma cells. Cancer Chemother Pharmacol, 47:126–132, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamilton, D., Fotouhi-Ardakani, N., Batist, G. (2002). The Glutathione System in Alkylator Resistance. In: Andersson, B., Murray, D. (eds) Clinically Relevant Resistance in Cancer Chemotherapy. Cancer Treatment and Research, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1173-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1173-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5428-4

  • Online ISBN: 978-1-4615-1173-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics