Advertisement

Signal Transduction Pathways Modulate Androgen Receptor Transcriptional Activity

  • Cynthia A. Heinlein
  • Chang Chawnshang 

Abstract

The development and maintenance of the prostate is dependent on the proper functioning of the androgen receptor (AR) in response to the androgenic steroids testosterone (T) and dihydrotestosterone (DHT). In addition to androgens, paracrine and autocrine regulation of cell growth by peptide growth factors and cytokines contribute to prostate homeostasis. Unlike steroid hormones, growth factors regulate cellular responses through binding to membrane tyrosine kinase receptors. Growth factor or cytokine binding initiates a phosphorylation cascade that ultimately results in phosphorylation of transcription factors or transcription factor interacting proteins. In the prostate, AR is among the transcription factors whose activity is influenced by signal transduction cascades and disruption of the normal interaction between signal transduction and AR transactivation may contribute to the progression of prostate cancer.

Keywords

Mitogen Activate Protein Kinase Hepatocyte Growth Factor Prostate Cancer Cell Focal Adhesion Kinase LNCaP Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu-Martin, M.T., Chari, A., Palladino, A.A., Craft, N.A. and Sawyers, C.L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor dependent transcription and apoptosis in prostate cancer. Mol. Cell. Biol. 1999; 19: 5143–5154.PubMedGoogle Scholar
  2. Adler, H.L., McCurdy, M.A., Kattan, M.W., Timme, T.L., Scardino, P.T. and Thompson, T.C. Elevated levels of circulating interleukin-6 and transforming growth factor betal in patients with metastatic prostatic carcinoma. J. Urol. 1999; 161: 182–187.PubMedCrossRefGoogle Scholar
  3. Agus, D.B., Akita, R.W., Fox, W.D., Lofgren, J.A., Higgins, B., Maiese, K., Scher, H.I. and Sliwkowski, M.X. A potential role for activated Her-2 in prostate cancer. Semin. Oncol. 2000; 27(Suppl 11): 76–83.PubMedGoogle Scholar
  4. Akira, S. IL-6 regulated transcription factors. Int. J. Biochem. Cell Biol. 1997; 29, 1401–1418.PubMedCrossRefGoogle Scholar
  5. Alpin, A.E., Howe, A., Alahari, S.K. and Juliano, R.L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 1998; 50: 197–263.Google Scholar
  6. Astier, A., Avraham, H., Manie, S.N., Groopman, J., Canty, T., Avraham, S. and Freedman, A.S. The related adhesion focal kinase tyrosine kinase is tyrosine-phosphorylated after betal-integrin stimulation in B cells and binds to pl30cas. J. Biol. Chem. 1997; 272: 228–232.PubMedCrossRefGoogle Scholar
  7. Avraham, H., Park, S.-Y., Schinkmann, K. and Avraham, S. RAFTH/Pyk2-mediated cellularsignalling. Cell. Signal. 2000; 12: 123-133.PubMedCrossRefGoogle Scholar
  8. Avraham, S., London, R., Fu, Y., Ota, S., Hiregowdara, D., Li, J., Jiang, S., Pasztor, L.M., White, R.A., Groopman, J.E. and Avraham, H. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J. Biol. Chem. 1995; 270: 27742–27751.PubMedCrossRefGoogle Scholar
  9. Barrack, E.R. TGF beta in prostate cancer: a growth inhibitor that can enhance tumorigenicity. Prostate 1997; 31: 61–70PubMedCrossRefGoogle Scholar
  10. Beck, C.A., Weigel, N.L. and Edwards, D.P. Effects of hormone and cellular modulators of protein phosphorylation on transcriptional activity, DNA binding, and phosphorylation of the human progesterone receptors. Mol. Endocrinol. 1992; 6: 607–620.PubMedCrossRefGoogle Scholar
  11. Blok, L.J., de Ruiter, P.E. and Brinkmann, A.O. Forskolin-induced dephosphorylation of the androgen receptor impairs ligand binding. Biochemistry 1998; 37: 3850–3857.PubMedCrossRefGoogle Scholar
  12. Brannon, M., Gomperts, M., Sumoy, L., Moon, R., and Kimelman, D. Beta catenin/XTcf-3 complex binds the Siamois promoter to regulate dorsal axis formation in Xenopus. Genes Dev. 1997; 11:2359–2370.PubMedCrossRefGoogle Scholar
  13. Bunone, G., Briand, P.-A., Miksicek, R.J. and Picard, D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996; 15: 2174–2183.PubMedGoogle Scholar
  14. Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J. G., Jen, J., Isaacs, W.B., Bova, G.S. and Sidransky, D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997; 57: 4997–5000.PubMedGoogle Scholar
  15. Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J. and Der, C.J. Increasing complexity or Ras signaling. Oncogene 1998; 17: 1395–1413.PubMedCrossRefGoogle Scholar
  16. Carraway, K.L., Weber, J.L., Unger, M.J., Ledesma, J., Yu, N., Gassmann, M. and Lai, C. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 1997; 387: 512–516.PubMedCrossRefGoogle Scholar
  17. Chauhan, D., Hideshima, T., Pandey, P., Treon, S., Teoh, G., Raje, N., Rosen, S., Krett, N., Husson, H., Avraham, S., Kharbanda, S. and Anderson, K.C. RAFTK/PYK2- dependent and -independent apoptosis in multiple myeloma cells. Oncogene 1999; 18: 6733–6740.PubMedCrossRefGoogle Scholar
  18. Chen, T., Cho, R.W., Stork, P.J.S. and Weber, M.J. Elevation of cyclic adenosine 3’, 5’- monophosphate potentiates activation of mitogen activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 1999; 59: 213–218.PubMedGoogle Scholar
  19. Chen, T., Wang, L.H. and Farrar, W.L. Interleukin 6 activates androgen receptor mediated gene expression through a signal transducer and activator of transcription 3- dependent pathway in LNCaP prostate cancer cells. Cancer Res. 2000; 60: 2132–2135.PubMedGoogle Scholar
  20. Chiu, J.J., Sgagias, M.K. and Cowan, K.H. Interleukin 6 acts as a paracrine growth factor in humam mammary carcinoma cell lines. Clin. Cancer Res. 1996; 2: 215–221.Google Scholar
  21. Chung, J., Uchida, E., Grammer, T. C. and Blenis, J. STAT3 serine phosphorylation by ERK- dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol. Cell. Biol. 1997; 17: 6508–6516.PubMedGoogle Scholar
  22. Chung, T.D.K., Yu, J.J., Kong, T.A., Spiotto, M.T. and Lin, J.M. Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 2000; 42: 1–7.PubMedCrossRefGoogle Scholar
  23. Chung, T.D.K., Yu, J.J., Spiotto, M.T., Bartkowski, M. and Simons, J.W. Characterization of the role of IL-6 in the progression of prostate cancer. Prostate 1999; 38: 199–207.PubMedCrossRefGoogle Scholar
  24. Connolly, J.M., and Rose, D.P. Production of epidermal growth factor and transforming growth factor alpha by the androgen responsive LNCaP human prostate cancer cell line. Prostate 1990; 16: 209–218.PubMedCrossRefGoogle Scholar
  25. Craft, N., Shostak, Y., Carey, M. and Sawyers, C.L. A mechanism for hormone independent prostate cancer through modulation of androgen receptor signaling by HER-2/neu tyrosine kinase. Nature Med. 1999; 5: 280–285.PubMedCrossRefGoogle Scholar
  26. Cronauer, M.V., Hittmair, A., Eder, I.E., Hobisch, A., Culig, Z., Ramoner, R., Zhang, J., Bartsch, G., Reissigl, A., Radmayr, C, Thurnher, M. and Klocker, H. Basic fibroblast growth factor levels in cancer cells and in the sera of patients suffering from proliferative disorders of the prostate. Prostate 1997; 31: 223–233.PubMedCrossRefGoogle Scholar
  27. Culig, Z., Hobisch, A., Cronauer, M.V., Radmayr, C, Trapman, J., Hittmair, A., Bartsch, G. and Klocker, H. Androgen receptor activation in prostatic tumor cell lines by insulin like growth factor 1, kertinocyte growth factor, and epidermal growth factor. Cancer Res. 1994; 54: 5474–5478.PubMedGoogle Scholar
  28. Cutler, R.L., Liu, L., DAmen, J.E., and Krystal, G. Multiple cytokines induce the phosphorylation of She and its association with Grb2 in hematopoietic cells. J. Biol. Chem. 1993; 268: 21463–21465.PubMedGoogle Scholar
  29. Darnell, J.E., Kerr, I.M. and Stark, G.R. JAk-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 64: 1415–1421.CrossRefGoogle Scholar
  30. Davies, M.A., Koul, D., Dhesi, H., Berman, R., McDonnell, T.J., McConkey, D., Yung, W.K.A. and Steck, P.A. Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res. 1999; 59: 2551–2556.PubMedGoogle Scholar
  31. Degeorges, A., Tatoud, R., Fauvel-Lafeve, F., Podgorniak, M.-P., Millot, G., De Cremoux, P. and Calvo, F. Stromal cells from human benign prostate hyperplasia produce a growth-inhibitory factor for LNCaP prostate cancer cells, identified as interleukin- 6. Int. J. Cancer 1996; 68: 207–214.PubMedCrossRefGoogle Scholar
  32. Delcommenne, M., Tan, C, Gray, V., Rue, L., Woodgett, J. and Dedhar, S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/ Akt by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 1998; 95: 11211–11216.PubMedCrossRefGoogle Scholar
  33. Di Christofano, A., Pesce, B., Cordon-Cardo, C. and Pandolfi, P.P. Pten is essential for embryonic development and tumor suppression. Nature Genetics 1998; 19: 348–355.CrossRefGoogle Scholar
  34. Di Cristofano, A. and Pandolfi, P.P. The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390.PubMedCrossRefGoogle Scholar
  35. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S.A. and Schlessinger, J. A role for Pyk2 and Src in linking G-protein coupled receptors with MAP kinase activation. Nature 1996; 383: 547–550.PubMedCrossRefGoogle Scholar
  36. Djakiew, D. Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 2000; 42: 150–160.PubMedCrossRefGoogle Scholar
  37. Downward, J. Ras signalling and apoptosis. Curr. Opin. Genet. Dev. 1998; 8: 49–54.PubMedCrossRefGoogle Scholar
  38. Drachenberg, D.E., Elgamal, A.-A.A., Rowbotham, R., Peterson, M. and Murphy, G. P. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 1999; 41: 127–133.PubMedCrossRefGoogle Scholar
  39. Eastham, J.A., Truong, L.D., Rogers, E., Kattan, M., Flanders, K.C., Scardino, P.T. and Thompson, T.C. Transforming growth factor betal: comparative immunohistochemical localization in human primary and metastatic prostate cancer. Lab. Invest. 1995; 73: 628–635.PubMedGoogle Scholar
  40. Font de Mora, J. and Brown, M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 2000; 20: 5041–5047.PubMedCrossRefGoogle Scholar
  41. Fujimoto, N., Yeh, S., Kang, H., Inui, S., Chang, H.C., Mizokami, A. and Chang, C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J. Biol. Chem. 1999; 274: 8316–8321.PubMedCrossRefGoogle Scholar
  42. Fujita, H., Kamiguchi, K., Cho, D., Shibanuma, M., Morimoto, C. and Tachibana, K. Interaction of Hic-5, a senescence-related protein, with focal adhesion kinase. J. Biol. Chem 1998; 273: 26516–26521.PubMedCrossRefGoogle Scholar
  43. Gollob, J.A., Schnipper, C.P., Murphy, E.A., Ritz, J. and Frank, D.A. The functional synergy between IL-12 and IL-2 involves p38 mitogen-activated protein kinase and is associated with the augmentation of STAT serine phosphorylation. J. Immunol. 1999; 162: 4472–4481.PubMedGoogle Scholar
  44. Graff, J.R., Konicek, B.W., McNulty, A.M., Wang, Z., Houck, K., Allen, S., Paul, J.D., Hbaiu, A., Goode, R.G., Sandusky, G.E., Vessella, R.L. and Neubauer, B.L. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27KIPl expression. J. Biol. Chem. 2000; 275: 24500–24505.PubMedCrossRefGoogle Scholar
  45. Grandis, J.R., Drenning, S.D., Zeng, Q., Watkins, S.C., Melhem, M.F., Endo, S., Johnson, D.E., Huang, L., He, Y. and Kim, J.D. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc. Natl. Acad. Sci. USA 2000; 97: 4227–4232.PubMedCrossRefGoogle Scholar
  46. Grasso, A.W., Wen, D., Miller, CM., Rhim, J.S., Pretlow, T.G. and Kung, H.J. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene 1997; 15: 2705–2716.PubMedCrossRefGoogle Scholar
  47. Graus-Porta, D., Beerli, R.R., Daly, J.D. and Hynes, N.E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBOJ. 1997; 16; 1647–1655.CrossRefGoogle Scholar
  48. Gumbiner, B.M. Signal transduction by beta catenin. Curr. Opin. Cell Biol. 1995; 7: 634–640.CrossRefGoogle Scholar
  49. Guo, C, Yu, S., Davis, A.T. and Ahmed, K. Nuclear matrix targeting of the protein kinase CK2 signal as a common downstream response to androgen or growth factor stimulation of prostate cancer cells. Cancer Res. 1999; 59: 1146–1151.PubMedGoogle Scholar
  50. Guo, Y. and Kyprianou, N. Overexpression of transforming growth factor (TGF) betal type II receptor restores TGF-betal sensitivity and signaling in human prostate cancer cells. Cell Growth Differ. 1998; 9: 185–193.PubMedGoogle Scholar
  51. Guo, Y. and Kyprianou, N. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells supresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 1999; 59: 1366–1371.PubMedGoogle Scholar
  52. Gupta, C. Modulation of androgen receptor (AR)-mediated transcriptional activity by EGF in the developing mouse reproductive tract primary cells. Mol. Cell. Endocrinol. 1999; 152: 169–178.PubMedCrossRefGoogle Scholar
  53. Guy, P.M., Platko, J.V., Cantley, L.C., Cerione, R.A. and Carraway, K.L. Insect cell expressed pl80erbB3 possesses an impaired tryosine kinase activity. Proc. Natl. Acad. Sci. USA 1994; 91: 8132–8136.PubMedCrossRefGoogle Scholar
  54. Hammer, G.D., Krylova, I., Zhang, Y., Darimont, B.D., Simpson, K., Weigal, N.L. and Ingram, H.A. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Molecular Cell 1999; 3: 521–526.PubMedCrossRefGoogle Scholar
  55. Hayes, S.A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D.M., ten Dijke, P. and Sun, Z. Smad 3 represses androgen-receptor mediated transcription. Cancer Res. 2001; 61: 2112–2118.PubMedGoogle Scholar
  56. Hemmings, B.A. Akt signaling: linking membrane events to life and death decisions. Science 1997; 275: 628–630.PubMedCrossRefGoogle Scholar
  57. Henttu, P. and Vihko, P. Growth factor regulation of gene expression in the human prostatic carcinoma cell line LNCaP. Cancer Res. 1993; 53; 1051–1058.PubMedGoogle Scholar
  58. Hobisch, A., Eder, I.E., Putz, T., Horninger, W., Bartsch, W., Klocker, H. and Culig, Z. Interleukin-6 regulates prostate-specific expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998; 58: 4640–4645.PubMedGoogle Scholar
  59. Hobisch, A., Rogatsch, H., Hittmair, A., Fuchs, D., Bartsch, G., Klocker, H., Bartsch, G. and Culig, Z. Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant, and malignant prostate tissue. J. Pathol. 2000; 191: 239–244.PubMedCrossRefGoogle Scholar
  60. Hoosein, N., Abdul, M., McCabe, R., Gero, E., Deftos, L., Banks, M., Hodges, S., Finn, L. and Logothetis, C. Clinical significance of elevation in neuroendocrine factors and interleukin-6 in metastatic prostate cancer. Urol. Oncol. 1995; 1: 246–251.PubMedCrossRefGoogle Scholar
  61. Houck, K.A., Michalopoulos, G.K. and Strom, S.C. Introduction of Ha-ras oncogene into rat liver epithelial cells and parenchymal hepatocytes confers resistance to the growth inhibitory effects of TGFbeta. Oncogene 1989; 4: 19–25.PubMedGoogle Scholar
  62. Huber, O., Korn, R., McLaughlin, J., Oshugi, M., Herrmann, B.G. and Kemler, R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mechan. Dev. 1996; 59: 3CrossRefGoogle Scholar
  63. Humphrey, P.A., Zhu, X., Zarneger, R., Swanson, P.E., Ratliff, T.L., Volmer, R.T. and Day, M.L. Hepatocyte growth factor and its receptor c-met in prostatic carcinoma. Am. J. Pathol. 1995; 147: 386–396.PubMedGoogle Scholar
  64. Iozzo, R.V., Eichstetter, I. and Danielson, K.G. Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res. 1995; 55: 3495–3499.PubMedGoogle Scholar
  65. Ishino, M., Aoto, H., Sasaski, H., Suzuki, R. and Sadaki, T. Phosphorylation of Hic-5 at tyrosine 60 by CAK beta and Fyn. FEBS lett. 2000; 474: 179–183.PubMedCrossRefGoogle Scholar
  66. Jenster, G., de Ruiter, P.E., van der Korput, H.A.G.M., Kuiper, G.G.J.M., Trapman, J. and Brinkmann, A.O. Changes in the abundance of androgen receptor isotypes: effects of ligand treatment, glutamine stretch variation, and mutation of putative phosphorylation sites. Biochemistry 1994; 33: 14064–14072.PubMedCrossRefGoogle Scholar
  67. Jones, J.T., Akita, R.W. and Sliwkowski, M.X. Binding specificities and affinities of EGF domains and ErbB receptors. FEBS Lett. 1999; 447: 227–231.PubMedCrossRefGoogle Scholar
  68. Kang, H.-Y., Lin, H.-K., Hu, Y.-C, Yeh, S., Huang, K.-E. and Chang, C. From transforming growth factor beta signaling to androgen action: identification of Smad 3 as an androgen receptor coregulator in prostate cancer cells. Proc. Natl. Acad. Sci. USA 2001; 98: 3018–3023.PubMedCrossRefGoogle Scholar
  69. Karunagaran, D., Tzahar, E., Beerli, R.R., Chen, X., Graus-Porta, D., Ratzkin, B.J., Seger, R., Hynes, N.E. and Yarden, Y. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996; 15: 254–264.PubMedGoogle Scholar
  70. Keller, E.T., Wanagat, J., and Ershler, W.B. Molecular and cellular biology of interleukin-6 and its receptor. Front. Biosci. 1996; 1: 340–357.Google Scholar
  71. Kim, I.Y., Ahn, H.-J., Lang, S., Oefelein, M.G., Oyasu, R., Kozlowski, J.M. and Lee, C. Loss of expression of transforming growth factor beta receptors is associated with poor prognosis in prostate cancer patients. Clin. Cancer Res. 1998; 4: 1625–1630.PubMedGoogle Scholar
  72. Kim, I.Y., Ahn, H.-J., Zelner, D.J., Shaw, J.W., Lang, S., Kato, M., Oefelein, M.G., Miyazono, K., Nemeth, J.A., Kozlowski, J.M. and Lee, C. Loss of expression of transforming growth factor beta type 1 and type 2 receptors correlates with tumor grade in human prostate cancer tissues. Clin. Cancer Res. 1996; 2: 1255–1261.PubMedGoogle Scholar
  73. Kirkland, W.L., Sorrentino, J.M. and Sirbasku, D.A. Control of cell growth. III. Direct mitogenic effect of thyroid hormones on estrogen dependent rat pituitary tumor cell line. J. Natl. Cancer Inst. 1976; 56: 1159–1164.PubMedGoogle Scholar
  74. Klein, B., Zhang, X.G., Jourdan, M., Content, J., Houssiau, F., Aarden, L. A., Piechazyk, M. and Bataille, R. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73: 517–526.PubMedGoogle Scholar
  75. Klotz, L.H., Auger, M., Andrulis, I. and Srigley, J. Molecular analysis of neu, sis, c-myc, fos and p53 oncogenes in benign prostatic hypertrophy and prostatic carcinoma. J. Urol. 1990; 143: 401A.Google Scholar
  76. Kovalovich, K., Li, W., DeAngelis, R., Greenbaum, L.E., Ciliberto, G. and Taub, R. Interleukin-6 protects against Fas-mediated death by establishing a critical level of antiapoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL. J. Biol. Chem. 2001; 276: 26605–26613.PubMedCrossRefGoogle Scholar
  77. Koziak, K., Kacmarek, E., Park, S.Y., Fu, Y., Avraham, S. and Avraham, H. RAFTK/Pyk2 involvement in platelet activation is mediated by phosphoinositide 3-kinase. Br. J. Haematol. 2001; 114: 134–140.PubMedCrossRefGoogle Scholar
  78. Kretzschmar, M., Doody, J., Timokhina, I. and Massague, J. A mechanism of repression of TGF/SMAD signaling by oncogenic Ras. Genes Dev. 1999; 13: 804–816.PubMedCrossRefGoogle Scholar
  79. Krstic, M.D., Rogatsky, I., Yamamoto, K.R. and Garabedian, M.J. Mitogen-activated and cyclin-dependent kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol. Cell. Biol. 1997; 17: 3947–3954.PubMedGoogle Scholar
  80. Kuhn, E.J., Kurnot, R.A., Sesterhenn, LA., Chang, E.H. and Moul, J.W. Expression of the cerbB-2 (Her2/neu) oncoprotein in huamn prostatic carcinoma. J. Urol. 1993; 150: 1427–1433.PubMedGoogle Scholar
  81. Kyprianou, N. and Isaacs, J.T. Expression of transforming growth factor beta in the rat ventral prostate during castration induced programmed cell death. Mol. Endocrinol. 1989; 3: 1515–1522.PubMedCrossRefGoogle Scholar
  82. Lamm, M.L.G., Sintich, S.M. and Lee, C. A proliferative effect of transforming growth factor-betal on a human prostate cancer cell line, TSU-Prl. Endocrinology 1998; 139: 787–790.PubMedCrossRefGoogle Scholar
  83. Langeler, E.G., van Uffelen, C.J., Blankenstein, M.A., van Steenbrugge, G. J. and Mulder, E. Effect of culture conditions on androgen sensitivity of the human prostatic cancer cell line LNCaP. Prostate 1993; 23: 213–223.PubMedCrossRefGoogle Scholar
  84. Lee, C, Sintich, S.M., Mathews, E.P., Shah, A.H., Kundu, S., Perry, K.T., Cho, J.S., Ilio, K.Y., Cronauer, M.V., Janulis, L. and Sensibar, J.A. Transforming growth factor beta in benign and malignant prostate. Prostate 1999; 39: 285–290.PubMedCrossRefGoogle Scholar
  85. Lenferink, A.E.G., Pinkas-Kramarski, R., van de Poll, M.L.M., van Vugt, M. J.H., Klapper, L.N., Tzahar, E., Waterman, H., Sela, M., van Zoelen, E.J.J, and Yarden, Y. Differential endocytic routing of homo- and heterodimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 1998; 17: 3385–3397.PubMedCrossRefGoogle Scholar
  86. Leung, H.Y., Weston, J. and Gullick, W.J. A potential autocrine loop between heregulin alpha and erbB3 receptor in human prostatic adenocarcinoma. Br. J. Urol. 1997; 79: 212–216.PubMedCrossRefGoogle Scholar
  87. Lewis, T.S., Shapiro, P.S., and Ahn, N. Signal transduction through MAP kinase cascades. Adv. Cancer Res 1998; 74: 49–139.CrossRefGoogle Scholar
  88. Li, J., Yen, C, Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C, Rodgers, L., McMombie, R., Bigner, S.H., Giovanella, B.C., Ittman, M., Tycko, B., Hibshoosh, H., Wignler, M. H. and Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.PubMedCrossRefGoogle Scholar
  89. Li, P., Nicosia, S.V. and Bai, W. Antagonism between PTEN/MMAC1/ TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J. Biol. Chem. 2001; 276: 20444–20450.PubMedCrossRefGoogle Scholar
  90. Lim, C.P., and Cao, X. Regulation of STAT3 activation by MEK kinase 1. J. Biol. Chem. 2001; 276: 21004–21011.PubMedCrossRefGoogle Scholar
  91. Lin, H.-K., Yeh, S., Kang, H.-Y. and Chang, C. Akt supresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA 2001; 98: 7200–7205.PubMedCrossRefGoogle Scholar
  92. Litvak, V., Tian, D., Shaul, Y.D. and Lev, S. Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein coupled receptor signaling cascades. J. Biol. Chem. 2000; 276: 32736–32746.CrossRefGoogle Scholar
  93. Liu, Z.-Y., Ganju, R.K., Wang, J.-F., Ona, M.A., Hatch, W.C., Zheng, T., Avraham, S., Gill, P. and Groopman, J.E. Cytokine signaling through the novel typrosine kinase RAFTK in Kaposi’s sarcoma cells. J. Clin. Invest. 1997; 99: 1798–1804.PubMedCrossRefGoogle Scholar
  94. Longstreet, M., Miller, B. and Howe, P.H. Loss of transforming growth factor betal(TGFbetal) induced growth arrest and p34cdk2 regulation in Ras transfected epithelial cells. Oncogene 1992; 7: 1549–1556.PubMedGoogle Scholar
  95. Lopez, G.N., Turck, C.W., Schaufele, F., Stallcup, M.R. and Kushner, P.J. Growth factors signal to steroid receptors through mitogen-activated kinase regulation of pi60 coactivator activity. J. Biol. Chem. 2001; 276: 2177–22182.Google Scholar
  96. Lou, W., Ni, Z., Dyer, K., Tweardy, D.J. and Gao, A.C. Interleukin-6 induces prostate cancer cell growth accompanied by activation of STAT3 signaling pathway. Prostate 2000; 42: 239–242.PubMedCrossRefGoogle Scholar
  97. Lu, C. and Kerbel, R.S. Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J. Cell Biol. 1993; 120, 1281–1288.PubMedCrossRefGoogle Scholar
  98. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.PubMedCrossRefGoogle Scholar
  99. Martikainen, P., Kyprianou, N. and Isaacs, J.T. Effect of transforming growth factor betal on proliferation and death of rat prostatic cells. Endocrinology 1990; 127: 2963–2968.PubMedCrossRefGoogle Scholar
  100. Massague, J. and Chen, Y.-G. Controlling TGF-beta signaling. Genes and Development 2000; 14: 627–644.PubMedGoogle Scholar
  101. Massague, J. and Wotton, D. Transcriptional control by the TGF-beta/SMAD signaling system. EMBO J. 2000; 19: 1745–1754.PubMedCrossRefGoogle Scholar
  102. Matsuda, T., Junicho, A., Yamamoto, T., Kishi, H., Korkmaz, K., Saatcioglu, F., Fuse, H. and Muraguchi, A. Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem. Biophys. Res. Comm. 2001; 283: 179–187.PubMedCrossRefGoogle Scholar
  103. Matsuya, M., Sasaki, H., Aoto, H., Mitaka, T., Nagura, K., Ohba, T., Ishino, M., Takahashi, S., Suzuki, R. and Sasaki, T. Cell adhesion kinase beta forms a complex with a new member, hic-5, of proteins localized at focal adhesions. J. Biol. Chem. 1998; 273: 1003–1014.PubMedCrossRefGoogle Scholar
  104. McCann, A., Dervan, P.A., Johnston, P.A., Gullick, W.J. and Carney, D.N. c-erbB-2 oncoprotein expression in primary human tumors. Cancer 1990; 65: 88.PubMedCrossRefGoogle Scholar
  105. Menard, S., Tagliabue, E., Campiglio, M. and Pupa, S.M. Role of HER2 gene overexpression in breast carcinoma. J. Cell. Physiol. 2000; 182: 150–162.PubMedCrossRefGoogle Scholar
  106. Mendelson, J. and Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene 2000; 19: 6550–6565.CrossRefGoogle Scholar
  107. Miki, S., Iwano, M., Miki, Y., Yamamoto, M., Tang, B., Yokokawa, K., Sonoda, T., Hirano, T. and Kishimoto, T. Interleukin-6 (IL-6) functions as an in vitro autocrine growth factor in renal cell carcinomas. FEBS Lett. 1989; 250: 607–610.PubMedCrossRefGoogle Scholar
  108. Miles, S.A., Rezai, A.R., Salazar-Gonzalez, J.F., Meyden, M.V., Stevens, R. H., Logan, D.M., Mitsuyasu, R.T., Taga, T., Hirano, T., Kishimoto, T. and Martinez-Maza, O. AIDS-Kaposi’s sarcoma-derived cells produce and respond to interleukin 6. Proc. Natl. Acad. Sci. USA 1990; 40: 4068–4072.CrossRefGoogle Scholar
  109. Mitsuuchi, Y., Johnson, S.W., Sonoda, G., Tanno, S., Golemis, E.A. and Testa, J.R. Identification of chromosome 3pl4.3–21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonin kinase AKT2. Oncogene 1999; 18: 4891–4898.PubMedCrossRefGoogle Scholar
  110. Morin, P.J. Beta-catenin signaling and cancer. BioEssays 1999; 21: 1021-1030.PubMedCrossRefGoogle Scholar
  111. Moriote, J., de Torres, I., Caceres, C, Valleo, C, Schwartz, S. and Reventos, J. Prognostic value of immunohistochemical expression or the erbB2 oncoprotein in metastatic prostate cancer. Int. J. Cancer 1999; 84: 421–425.CrossRefGoogle Scholar
  112. Mulder, K.M. Role of Ras and Mapks in TGF beta signaling. Cytokine Growth Factor Rev. 2000; 11: 23–35.PubMedCrossRefGoogle Scholar
  113. Murakami, M., Hibi, M., Nakagawa, N., Nakagawa, T., Yasukawa, K., Yamanishi, K., Taga, T. and Kishimoto, T. IL-6 induced homodimerization of gpl30 and associated activation of a tyrosine kinase. Science 1993; 260: 1808–1810.PubMedCrossRefGoogle Scholar
  114. Myers, R.B., Srivastvava, S., Oelschlager, D.K. and Grizzle, W.E. Expression of pl60erbB3 and pl85erbB2 in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. J. Natl. Cancer Inst. 1994; 86, 1140–1145.PubMedCrossRefGoogle Scholar
  115. Nakamoto, T., Chang, C, Li, A. and Chodak, G.W. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res. 1992; 52: 571–577.PubMedGoogle Scholar
  116. Nazareth, L.V. and Weigel, N.L. Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem. 1996; 271: 19900–19907.PubMedCrossRefGoogle Scholar
  117. Nemeth, J.A., Sensibar, J.A., White, R.R., Zelner, D.J., Kim, I.Y. and Lee, C. Prostatic ductal system in rats: tissue specific expression and regional variation in stromal distribution of transforming growth factor betal. Prostate 1997; 33: 64–71.PubMedCrossRefGoogle Scholar
  118. Nishiya, N., Tachibana, K., Shibanuma, M., Mashimo, J.-I. and Nose, K. Hic-5 reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol. Cell. Biol. 2001; 21: 5332–5345.PubMedCrossRefGoogle Scholar
  119. Oft, M., Peli, J., Rudaz, C, Schwartz, H., Beug, H. and Reichman, E. TGF-betal and Ha-Ras collaborate on modulating the plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996; 10: 2462–2477.PubMedCrossRefGoogle Scholar
  120. Okamoto, M., Lee, C. and Oyasu, R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcionoma cells in vitro. Cancer Res. 1997; 57: 141–146.PubMedGoogle Scholar
  121. Okano, J., Gaslightwala, I., Birnbaum, M.J., Rustgi, A.K. and Nakagawa, H. Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J.Biol. Chem. 2000; 275: 30934–30942.PubMedCrossRefGoogle Scholar
  122. Olayioye, M.A., Graus-Porta, D., Beerli, R.R., Rohrer, J., Gay, B. and Hynes, N.E. ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol. Cell. Biol. 1998; 18: 5042–5051.PubMedGoogle Scholar
  123. Olayioye, M.A., Neve, R.M., Lane, H.A., and Hynes, N.E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000; 19: 3159–3167.PubMedCrossRefGoogle Scholar
  124. Orsulic, S. and Peifer, M. An in vivo structure-function study of armadillo, the beta catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J. Cell Biol. 1996; 134: 1283–1300.PubMedCrossRefGoogle Scholar
  125. Osada, M., Ohmori, T., Yatomi, Y., Satoh, K., Hosogaya, S. and Ozaki, Y. Involvement of Hic-5 in platelet activation: integrin allbp3-dependent tyrosine phosphorylation and association with proline-rich kinase 2. Biochem. J. 2001; 355: 691–697.PubMedGoogle Scholar
  126. Papkoff, J. and Aikawa, M. WNT-1 and HGF regulate GSK3beta activity and beta catenin signaling in mammary epithelial cells. Biochem. Biophys. Res. Comm. 1998; 247: 851–858.PubMedCrossRefGoogle Scholar
  127. Park, B.-J., Park, J.-L, Byun, J.-H. and Chi, S.-G. Mitotic conversion of transforming growth factor betal effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. Cancer Res. 2000; 60: 3031–3038.PubMedGoogle Scholar
  128. Pegram, M., Hsu, S., Lewis, G., Pietras, R., Beryt, M., Sliwkowski, M., Coombs, D., Baly, D., Kabbinavar, F. and Slamon, D. Inhibitory effects of combinations of HER- 2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18: 2241–2251.PubMedCrossRefGoogle Scholar
  129. Pegram, M.D. and Slamon, D.J. Combination therapy with trastuzumab (herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor enhanced chemosensitivity. Semin. Oncol. 1999; 4 (Suppl 12): 89–95.Google Scholar
  130. Pinkas-Kramarski, R., Soussan, L., Waterman, H., Levkowitz, G., Alroy, I., Klapper, L., Lavi, S., Seger, R., Ratzkin, B. J., Sela, M. and Yarden, Y. Diversification of neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996; 15: 2452–2467.PubMedGoogle Scholar
  131. Pisters, L.L., Troncoso, P., Zhau, H.E., Li, W., von Eschenbach, A.C. and Chung, L.W. c-met proto-oncogene expression in benign and malignant prostate tissues. J. Urol. 1995; 154:293–298.PubMedCrossRefGoogle Scholar
  132. Qiu, Y., Ravi, L. and Kung, H.J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 1998; 393: 83–85.PubMedCrossRefGoogle Scholar
  133. Qiu, Y., Robinson, D., Pretlow, T.G. and Kung, H.-J. Etk/Bmx, a tyrosine kinase with a pleckstrin homology domain, is an effector of phosphatidylinositol 3’ kinase and is involved in interleukin 6 induced neuroendocrine differentiation of prostate cancer cells. Proc. Natl. Acad. Sci. USA 1998; 95: 3644–3649.PubMedCrossRefGoogle Scholar
  134. Ramaswamy, S., Nakamura, N., Vazquez, F., Batt, D.B., Perera, S., Roberts, T.M. and Sellers, W.R. Regulation of Gl progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatisdylinositol 3-kinase/ Akt pathway. Proc. Natl. Acad. Sci. USA 1999; 96: 2110–2115.PubMedCrossRefGoogle Scholar
  135. Reinkainen, P., Palvimo, J.J. and Janne, O.A. Effects of mitogens an androgen receptor mediated transactivation. Endocrinol. 1996; 137: 4351–4357.CrossRefGoogle Scholar
  136. Riese, D.J. and Stern, D.F. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays 1998; 20: 41–48.PubMedCrossRefGoogle Scholar
  137. Riese, D.J., van Raaij, T.M., Plowman, G.D., Andrews, G.C. and Stern, D.F. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol. Cell. Biol. 1995; 15: 5770–5776.PubMedGoogle Scholar
  138. Rogatsky, I., Waase, C.L.M. and Garabadian, M.J. Phosphorylation and inhibition of rat glucocorticoid receptor by transcriptional activation by glycogen synthase kinase-3 (GSK-3): Species specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J. Biol. Chem. 1998; 273: 14315–14321.PubMedCrossRefGoogle Scholar
  139. Rommel, C, Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D. and Glass, D.J. Differentiation stage-specific inhibition of the Raf-Mek-Erk pathway by Akt. Science 1999; 286: 1738–1741.PubMedCrossRefGoogle Scholar
  140. Rowan, B.G., Garrison, N., Weigel, N.L. and O’Malley, B.W. 8-bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol. Cell. Biol. 2000; 20: 8720–8730.PubMedCrossRefGoogle Scholar
  141. Rowan, B.G., Weigel, N.L. and O’Malley, B.W. Phosphorylation of steroid receptor coactivator-1: identification of the phosphorylation sites and phosphorylation through mitogen-activated protein kinase pathway. J. Biol. Chem. 2000; 275: 4475–4483.PubMedCrossRefGoogle Scholar
  142. Russell, P.J., Bennett, S., and Strieker, P. Growth factor involvement in the progression of prostate cancer. Clin. Chem. 1998; 44: 705–723.PubMedGoogle Scholar
  143. Sadasivan, R., Morgan, R., Jennings, S., Austenfeld, M., van Veldhuizen, P., Stephens, R. and Noble, M. Overexpression of Her2/neu may be an indicator of poor prognosis in prostate cancer. J. Urol. 1993; 150: 126–131.PubMedGoogle Scholar
  144. Sakanaka, C, Sun, T.-Q. and Williams, L.T. New steps in the Wnt/beta catenin signal transduction pathway. Rec. Prog. Hormone Res. 2000; 55: 225–236.Google Scholar
  145. Saloman, D.S., Brandt, R., Ciardiello, F. and Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol/Hematol. 1995; 19: 183–232.CrossRefGoogle Scholar
  146. Sasaki, H., Nagura, K., Ishino, M., Tobioka, H. and Kotar, K. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J. Biol. Chem. 1995; 270: 21206–21219.PubMedCrossRefGoogle Scholar
  147. Schlaepfer, D.D., and Hunter, T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 1998; 8: 151–157.PubMedCrossRefGoogle Scholar
  148. Schwartz, L.C., Gingras, M.-C, Goldberg, G., Greenberg, A.H. and Wright, J.A. Loss of growth factor dependence and conversion of transforming growth factor betal inhibition to stimulation in metastatic H-Ras-transformed murine fibroblasts. Cancer Res. 1988; 48: 6999–7003.Google Scholar
  149. Shao, D. and Lazar, M. Modulating nuclear receptor function: may the phos be with you. J. Clin. Invest. 1999; 103: 1617–1618.PubMedCrossRefGoogle Scholar
  150. Shariat, S.F., Shalev, M, Menesses-Diaz, A., Kim, I.Y., Kattan, M.W., Wheeler, T.M. and Slawin, K.M. Preoperative plasma levels of transforming growth factor betal (TGFbl) strongly predict progression in patients undergoing radical prostectomy. J. Clin. Oncol. 2001; 19L: 2856–2864.PubMedGoogle Scholar
  151. Shibanuma, M., Mashimo, J., Kuroki, T. and Nose, K. Characterization of the TGFbetal inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence. J. Biol. Chem. 1994; 269: 26767–26774.PubMedGoogle Scholar
  152. Shibanuma, M., Mochizuki, E., Maniwa, R., Mashimo, J.I., Nishiya, N., Imai, S.I., Takano, T., Oshimura, M. and Nose, K. Induction of senescence like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized fibroblasts. Mol. Cell. Biol. 1997; 17: 1224–1235.PubMedGoogle Scholar
  153. Signoretti, S., Montironi, R., Manola, J., Altimari, A., Tarn, C, Bubley, G., Balk, S., Thomas, G., Kaplan, I., Hlarky, L., Hahnfeldt, P., Kantoff, P. and Loda, M. Her2-neu expression and progression toward androgen independence in human prostate cancer. J. Natl. Cancer Inst. 2000; 92: 1918–1925.PubMedCrossRefGoogle Scholar
  154. Simpson, L. and Parsons, R. PTEN: Life as a tumor suppressor. Exp. Cell Res. 2001; 264: 29–41.PubMedCrossRefGoogle Scholar
  155. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the Her2/neu oncogene. Science 1987; 235: 177–182.PubMedCrossRefGoogle Scholar
  156. Smith, P.C., Hobisch, A., Lin, D.-L., Culig, Z. and Keller, E.T. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Res. 2001; 12: 33–40.CrossRefGoogle Scholar
  157. Spiotto, M.T. and Chung, T.D.K. STAT3 mediates IL-6-induced growth inhibition in the human prostate cancer cell line LNCaP. Prostate 2000; 42: 88–98.PubMedCrossRefGoogle Scholar
  158. Spiotto, M.T. and Chung, T.D.K. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 2000; 42: 186–195.PubMedCrossRefGoogle Scholar
  159. Stahl, N., Boulton, T.G., Farruggella, T., Ip, N.Y., Davis, S., Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Barbieri, G., Pellegrini, S., Ihle, I.N. and Yancopoulus, G.D. Association and activation of JAK-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 1994; 163: 92–95.CrossRefGoogle Scholar
  160. Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C, Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P., and Mak, T.W. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.PubMedCrossRefGoogle Scholar
  161. Stanzione, R., Picascia, A., Chieffi, P., Imbimbo, C, Palmieri, A., Mirone, V., Staibano, S., Franco, R., De Rosa, G., Schl.essinger, J. and Tramontano, D. Variations of proline rich kinase Pyk2 expression correlate with prostate cancer progression. Laboratory Investigation 2001; 81: 51–59.PubMedCrossRefGoogle Scholar
  162. Stravodimos, K., Constantinos, C, Manousakas, T., Pavlaki, C, Panazopoulos, D., Giannopoulos, A. and Dimopoulos, C. Immunohistochemical expression of TGF betal and nm-23 antioncogene in prostate cancer: divergent correlation with clinicopathological parameters. Anticancer Res. 2000; 20: 3823–3828.PubMedGoogle Scholar
  163. Sutkowski, D.M., Fong, C.-J., Sensibar, J.A., Rademaker, A.W., Sherwood, E.R., Kozlowski, J.M. and Lee, C. Interaction of epidermal growth factor and transforming growth factor beta in human prostatic epithelial cells in culture. Prostate 1992; 21: 133–143.PubMedCrossRefGoogle Scholar
  164. Thomas, S.M., Hagel, M. and Turner, C.E. Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J. Cell Sci. 1999; 112: 181–190.PubMedGoogle Scholar
  165. Tremblay, A., Tremblay, G.B., Labrie, F., and Giguere, V. Ligand-independent recruitment of SRC-1 to Estrogen receptor p through phosphorylation of activation function AF-1. Mol. Cell 1999; 3: 513–519.PubMedCrossRefGoogle Scholar
  166. Trucia, C.I., Byers, S. and Gelmann, E.P. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 2000; 60: 4709–4713.Google Scholar
  167. Truong, L.D., Kadmon, D., McCune, B.K., Flanders, K.C., Scardino, P.T. and Thompson, T.C. Association of transforming growth factor betal with prostate cancer: an immunohistochemical study. Hum. Pathol. 1993; 24: 4–9.PubMedCrossRefGoogle Scholar
  168. Turkson, J., Bowman, T., Adnane, J., Zhang, Y., Djeu, J.Y., Sekharam, M., Frank, D.A., Holzman, L.B., Wu, J., Sebti, S. and Jove, R. Requirement for Ras/Racl-mediated p38 and c-Jun N-terminal kinase signaling in STAT3 transcriptional activity induced by the Src oncoprotein. Mol. Cell. Biol. 1999; 19: 7519–7528.PubMedGoogle Scholar
  169. Turkson, J. and Jove, R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 2000; 19: 6613–6626.PubMedCrossRefGoogle Scholar
  170. Twillie, D.A., Eisenberger, M.A., Carducci, M.A., Hseih, W.-S., Kim, W. Y. and Simons, J.W. Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology 1995; 45: 542–549.PubMedCrossRefGoogle Scholar
  171. Tzahar, E., Pinkas-Kramarski, R., Moyer, J.D., Klapper, L.N., Alroy, I., Levkowitz, G., Shelly, M., Henis, S., Eisenstein, M., Ratzkin, B.J., Sela, M., Andrews, G.C. and Yarden, Y. Bivalence of the EGF-like ligands drives the ErbB signaling network. EMBO J. 1997; 16: 4938–4950.PubMedCrossRefGoogle Scholar
  172. Tzahar, E., Waterman, H., Chen, X., Levkowitz, G., Karunagaran, D., Lavi, S., Ratzkin, B.J., and Yarden, Y. A hierarchical network of interreceptor interactions determines signal transduction by neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 1996; 16: 5276–5287.PubMedGoogle Scholar
  173. Ueda, H., Abbi, S., Zheng, C. and Guan, J.-L. Suppression of PYK2 kinase and cellular activities by FIP2000. J. Cell. Biol. 2000; 149: 423–430.PubMedCrossRefGoogle Scholar
  174. Voeller, H.J., Trucia, C.I. and Gelmann, E.P. Beta catenin mutations in human prostate cancer. Cancer Res. 1998; 58: 2520–2523.PubMedGoogle Scholar
  175. Wagner, B.L., Norris, J.D., Knotts, T.A., Weigel, N.L. and McDonnel, D. P. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 1998; 18: 1369–1378.PubMedGoogle Scholar
  176. Ward, L.D., Howlett, G.J., Discolo, G., Yasukawa, K., HAmmacher, A., Moritz, R.L. and Simpson, R.J. High affinity interleukin-6 receptor is a hexameric complex consisting of two molecules each of interleukin-6, interleukin-6 receptor, and gpl30. J. Biol. Chem. 1994; 269: 23286–23289.PubMedGoogle Scholar
  177. Waterman, H., Sabani, I., Geiger, B. and Yarden, Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. J. Biol. Chem. 1998; 273: 13819–13827.PubMedCrossRefGoogle Scholar
  178. Weiss, A. and Schlessinger, J. Switching signals on or off by receptor dimerization. Cell 1998; 94: 277–280.PubMedCrossRefGoogle Scholar
  179. Wen, Y., Hu, M.C.T., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D. H. and Hung, M.C. Her2/neu promotes androgen independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 2000; 60: 6841–6845.PubMedGoogle Scholar
  180. Wen, Z., Zhong, Z. and Darnell, J.E. Maximal activation of trnascription by STAT1 and STAT3 requires both tyrosine and serine phosphorylation. Cell 1995; 82: 241–250.PubMedCrossRefGoogle Scholar
  181. Wikstrom, P., Stattin, P., Frank-Lissbrant, I., Damber, J.-E. and Bergh, A. Transforming growth factor betal is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998; 37: 19–29.PubMedCrossRefGoogle Scholar
  182. Wilding, G. Response of prostate cancer cells to peptide growth factors: transforming growth factor beta. Cancer Surv. 1991; 11: 147–163.PubMedCrossRefGoogle Scholar
  183. Willert, K. and Nusse, R. Beta-catenin: a key regulator of Wnt signaling. Curr. Opin. Genet. Dev. 1998; 8: 95–102.PubMedCrossRefGoogle Scholar
  184. Wong, Y.C., Xie, W. and Tsao, S.W. Structural changes and alteration in expression of TGF-betal and its receptors in prostatic intraepithelial neoplasia (PIN) in the ventral prostate of Noble rats. Prostate 2000; 45: 289–298.PubMedCrossRefGoogle Scholar
  185. Xiong, W.-C. and Parsons, J.T. Induction of apoptosis after expression of PYK2, a tyrosine kinase structurally related to focal adhesion kinase. J. Cell. Biol. 1997; 139: 529–539.PubMedCrossRefGoogle Scholar
  186. Yan, Z., Winawer, S. and Friedman, E. Two different signal transduction pathways can be activated by transforming growth factor betal in epithelial cells. J. Biol. Chem. 1994; 269: 13231–13237.PubMedGoogle Scholar
  187. Yang, E.Y. and Moses, H.L. Transforming growth factor betal-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 1990; 111: 731–741.PubMedCrossRefGoogle Scholar
  188. Yang, L., Guerro, J., Hong, H., DeFranco, D.B. and Stallcup, M.R. Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 2000; 11: 2007–2018.PubMedGoogle Scholar
  189. Yart, A., Laffargue, M., Mayeux, P., Chretien, S., Peres, C, Tonks, N., Roche, S., Payrastre, B., Chap, H. and Raynal, P. A critical role for phosphoinositide 3 kinase upstream of Gab 1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J. Biol. Chem. 2001; 276: 8856–8864.PubMedCrossRefGoogle Scholar
  190. Yeh, S., Lin, H., Kang, H., Thin, T.H., Lin, M. and Chang, C. From HER2/Neu signal cascade to androgen receptor and its target coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA 1999; 96: 5458–5463.PubMedCrossRefGoogle Scholar
  191. Yenice, S., Davis, A.T., Goueli, S.A., Akdas, A., Limas, C. and Ahmed, K. Nuclear casein kinase 2 (CK-2) activity in human normal, benign hypersplastic, and cancerous prostate. Prostate 1994; 24: 11–16.PubMedCrossRefGoogle Scholar
  192. Zhou, Y., Gross, W., Hong, S.-K., and Privalsky, M.L. The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol. Cell. Biochem 2001; 220: 1–13.PubMedCrossRefGoogle Scholar
  193. Zimmerman, S. and Moelling, K. Phosphorylation regulation of Raf by Akt (protein kinase B). Science 1999; 286: 1741–1744.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Cynthia A. Heinlein
    • 1
  • Chang Chawnshang 
    • 1
  1. 1.George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation OncologyUniversity of RochesterRochester

Personalised recommendations