Skip to main content

Structural and Functional Analysis of the Androgen Receptor

  • Chapter

Abstract

The androgen receptor (AR) is a member of the nuclear receptor superfamily, members of which function as ligand-inducible transcription factors that mediate the expression of target genes in response to ligands specific to each receptor, including steroids, retinoids, vitamin D, and thyroid hormone. Members of the nuclear receptor superfamily all share a common structure composed of an NH2-terminal transactivation domain and DNA and ligand binding domains. Nuclear receptors can be subdivided into three general types (Mangelsdorf et al., 1995 McKenna et al., 1999 Tsai and O’Malley, 1994). The classical steroid receptors such as AR, the estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) are grouped as type 1 receptors. These receptors typically function as ligand induced homodimers, although heterodimerization between steroid receptors and other nuclear receptors has been reported (Chen et al., 1997c Lee et al., 1999 Panet-Raymand et al., 2000). The type 1 nuclear receptors typically bind to DNA response elements organized as inverted repeats (Mangelsdorf et al., 1995). The type 2 nuclear receptors dimerize with the 9-cis retinoic acid receptor (RXR) and include the receptors for vitamin D3 (VDR), thyroid hormone (TR), all-trans retinoic acid (RAR), and the peroxisome proliferator activated receptors (PPAR).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarnisalo, P., Palvimo, J.J. and Janne, O.A. CREB-binding protein in androgen receptor mediated signalling. Proc. Natl. Acad. Sci. USA 1998; 95: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Abraham, G.E. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J. Clin. Endocrinol. Metab. 1974; 39: 340–346

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, S.F., Cheng, A., Dovey, L., Hawkins, J.R., Martin, H., Rowland, J., Shimura, N., Tait, A.D. and Hughes, I.A. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 2000; 85: 658–665

    Article  PubMed  CAS  Google Scholar 

  • Akner, G., Sundquist, K.G., Denis, M., Wikstrom, A.C. and Gustafsson, J.-A. Immunocytochemical localization of glucocorticoid receptor in human gingival fibroblasts and evidence for colocalization of glucocorticoid receptor with cytoplasmic microtubules. Eur. J. Cell Biol. 1990; 53: 390–401

    PubMed  CAS  Google Scholar 

  • Akner, G., Wikstrom, A.-C. and Gustafsson, J.-A. Subcellular distribution of the glucocorticoid receptor and evidence for its association with microtubules. Journal of Steroid Biochemistry and Molecular Biology 1995; 52: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Alen, P., Claessens, F., Schoenmakers, E., Swinnen, J.V., Verhoeven, G., Rombauts, W. and Peeters, B. Interaction of the putative androgen receptor-specific coactivator ARA70/ELE la with multiple steroid receptors and identification of an internally deleted ELE lb isoform. Molecular Endocrinol. 1999; 13: 117–128

    Article  CAS  Google Scholar 

  • Angel, P. and Karin, M. The role of Jun, Fos, and the AP-1 complex in cell proliferation and transformation. Biochem. Biophys. Acta 1991; 1072: 129–157

    PubMed  CAS  Google Scholar 

  • Arbizu, T., Santamaria, J., Gomez, J.M., Quilez, A. and Serra, J.P. A family with adult spinal and bulbar muscular atrophy, X-linked inheritance and associated testicular failure. J. Neurol. Sci. 1983; 59: 371–382

    Article  PubMed  CAS  Google Scholar 

  • Avila, D.M., Zoppi, S. and McPhaul, M.J. The androgen receptor (AR) in syndromes of androgen insenstivity and in prostate cancer. J. Steroid Biochem. Mol. Biol. 2001; 76: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Barsony, J., Pike, J.W., DeLuca, H.F. and Marx, S.J. Immunocytology with microwave-fixed fibroblasts shows la,25-dihydroxy vitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J. Cell Biol. 1990; 111: 2385

    Google Scholar 

  • Beato, M. Gene regulation by steroid hormones. Cell 1989; 56: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Beato, M., Herrlich, P. and Schutz, G. Steroid hormone receptors: many actors in search of a plot. Cell 1995; 83: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Beilin, J., Ball, E.M.A., Favaloro, J.M. and Zajac, J.D. Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J. Mol. Endocrinol. 2000; 25: 85–96

    Article  PubMed  CAS  Google Scholar 

  • Bentel, J.M. and Tilley, W.D. Androgen receptors in prostate cancer. J. Endocrinol. 1996; 151: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Benten, W.P.M., Lieberherr, M., Stamm, O., Wrehlke, C, Guo, Z. and Wunderlich, F. Testosterone signalling through internalizable surface receptors in androgen receptor free macrophages. Mol. Biol. Cell 1999; 10: 3113–3123

    PubMed  CAS  Google Scholar 

  • Bevan, C.L., Hoare, S., Claessens, F., Heery, D.M. and Parker, M.G. The AF-1 and AF-2 domains of the androgen receptor interact with distinct regions of SRC1. Mol. Cell. Biol. 1999; 19: 8383–8392

    PubMed  CAS  Google Scholar 

  • Blanco, J.C.G., Minucci, S., Lu, J., Yang, X., Walker, K.K., Chen, H., Evans, R.M., Nakatani, Y. and Ozato, K. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 1998; 12: 1638–1651

    Article  PubMed  CAS  Google Scholar 

  • Blok, L.J. and et al. Transcriptional regulation of androgen receptor gene expression in sertoli cells and other cell types. Molecular and Cellular Endocrinology 1992; 88: 153–164

    Article  PubMed  CAS  Google Scholar 

  • Blok, L.J., de Ruiter, P.E. and Brinkmann, A.O. Forskolin-induced dephosphorylation of the androgen receptor impairs ligand binding. Biochemistry 1998; 37: 3850–3857

    Article  PubMed  CAS  Google Scholar 

  • Blok, L.J., Hoogerbrugge, J.W., Themmen, A.P.N., Baarends, W.M., Post, M. and Grootegoed, J.A. Transient down-regulation of androgen receptor messenger ribonucleic acid (mRNA) expression in sertoli cells by follicle-stimulating hormone is followed by up-regulation of androgen receptor mRNA and protein. Endocrinology 1992; 131: 1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Bohen, S.P. Hsp90 mutants disrupt glucocorticoid receptor binding and destabilize aporeceptor complexes. J. Biol. Chem. 1995; 270: 29433–29438

    PubMed  CAS  Google Scholar 

  • Bourguet, W., Germain, P. and Gronemeyer, H. Nuclear receptor ligand binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci. 2000; 21: 381–388

    Article  PubMed  CAS  Google Scholar 

  • Bourguet, W., Ruff, M, Chambon, P., Gronemeyer, H. and Moras, D. Crystal structure of the ligand binding domain of the human nuclear receptor RXR-alpha. Nature 1995; 375: 359–360

    Article  Google Scholar 

  • Brandeis, M. et al. Spl elements protect a CpG island from de novo methylation. Nature 1994; 371: 435–438

    Article  PubMed  CAS  Google Scholar 

  • Brann, D.W., Hendry, L.B. and Mahesh, V.B. Emerging diversities in the mechanism of action of steroid hormones. J. Steroid. Biochem. Mol. Biol. 1995; 52: 113–133

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann, A.O. and Trapman, J. Genetic analysis of androgen receptors in development and disease. Adv. Pharmacol. 2000; 47: 317–341

    Article  PubMed  CAS  Google Scholar 

  • Brown, C.J., Goss, S.J., Lubahn, D.B., Joseph, D.R., Wilson, E.M., French, F.S. and Willard, H.F. Androgen receptor locus on the human X chromosome: regional localization to Xql 1–12 and description of a DNA polymorphism. Am J. Hum. Genet. 1989; 44: 264–269

    PubMed  CAS  Google Scholar 

  • Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engelstrom, O., Ohman, L., Greene, G.L., Gustafsson, J.-A. and Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753–758

    Article  PubMed  CAS  Google Scholar 

  • Bubulya, A., Wise, S.C., Shen, X.-Q., Burmeister, L.A. and Shemshedini, L. c-jun can mediate androgen receptor-induced transactivation. J. Biol. Chem. 1996; 271: 24583–24589

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, N.L., Driver, E.D. and Miesfeld, R. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucl. Acids Res. 1994; 22: 3181–3186

    Article  PubMed  CAS  Google Scholar 

  • Chan, T.O., Rittenhouse, S.E. and Tsichlis, P.N. AKT/PKB and other D3 phosphoinositide-regulated kinases: acivation by phosphoinositide-dependent phosphorylation. Ann. Rev. Biochem. 1999; 98: 965–1014

    Article  Google Scholar 

  • Chang, C, Da Silva, S.L., Ideta, R., Lee, Y.F., Yeh, S. and Burbach, J.P.H. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 1994; 1994: 6040–6044

    Article  Google Scholar 

  • Chang, C. and Kokontis, J. Identification of a new member of the steroid receptor superfamily by cloning and sequence analysis. Biochem. Biophys. Res. Comm. 1988; 155: 971–977

    Article  PubMed  CAS  Google Scholar 

  • Chang, C, Kokontis, J. and Liao, S. Molecular cloning of the human and rat complementary DNA encoding androgen receptors. Science 1988a; 240: 324–326

    Article  PubMed  CAS  Google Scholar 

  • Chang, C, Kokontis, J. and Liao, S. Structural analysis of complementary DNA and amino acid sequences of the human and rat androgen receptors. Proc. Natl. Acad. Sci. USA 1988b; 85: 7211–7215

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Lin, R.J., Schiltz, R.L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M.L., Nakatani, Y. and Evans, R.M. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with p/CAF and CBP/p300. Cell 1997a; 90: 569–580

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Supakar, P.C., Vellanoweth, R.L., Song, C.S., Chatterjee, B. and Roy, A.K. Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with SP1 and a pyrimidine single strand binding protein. Mol. Endocrinol. 1997b; 11: 3–15

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Wang, J., Yu, G., Liu, W. and Pearce, D. Androgen and glucocorticoid receptor heterodimer formation: a possible mechanism for mutual inhibition of transcriptional activity. J. Biol. Chem. 1997c; 272: 14087–14092

    Article  PubMed  CAS  Google Scholar 

  • Cho, H., Orphanides, G., Sun, X., Yang, X.J., Ogryzko, V., Lees, E., Nakatani, Y. and Reinberg, D. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 1998; 18: 5355–5363

    PubMed  CAS  Google Scholar 

  • Claessens, F., Verrijdt, G., Schoenmakers, E., Haelens, A., Peeters, B., Verhoeven, G. and Rombauts, W. Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. J. Steroid Biochem. Mol. Biol. 2001; 76: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Cooke, P.S., Young, P. and Cunha, G.R. Androgen receptor expression in developing male reproductive organs. Endocrinology 1997; 128: 2867–2873

    Article  Google Scholar 

  • Craft, N., Shostak, Y., Carey, M. and Sawyers, C.L. A mechanism for hormone independent prostate cancer through modulation of androgen receptor signaling by HER-2/neu tyrosine kinase. Nature Med. 1999; 5: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Culig, Z., Hobisch, A., Cronauer, M.V., Cato, A.C.B., Hittmair, A., Radmayr, C, Eberle, J., Bartsch, G. and Klocker, H. Mutant androgen receptor detected in an advanced stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol. 1993; 7: 1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Culig, Z., Hobisch, A., Cronauer, M.V., Radmayr, C, Trapman, J., Hittmair, A., Bartsch, G. and Klocker, H. Androgen receptor activation in prostatic tumor cell lines by insulin like growth factor 1, kertinocyte growth factor, and epidermal growth factor. Cancer Res. 1994; 54: 5474–5478

    PubMed  CAS  Google Scholar 

  • Cunha, G.R., Donjacour, A.A., Cooke, P.S., Mee, S., Bigsby, R.M., Higgins, S.J. and Sugimura, Y. The endocrinology and development of the prostate. Endocr. Rev. 1987; 8: 338–362

    Article  PubMed  CAS  Google Scholar 

  • Dahlman-Wright, K., Almlof, T., McEwan, I.J., Gustafsson, J.-A. and Wright, A.P.H. Deliniation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc. Natl. Acad. Sci. USA 1994; 91: 1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Dai, J.L. and Burnstein, K.L. Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regualation of receptor messinger RNA. Mol. Endocrinol. 1996; 10: 1582–1594

    Article  PubMed  CAS  Google Scholar 

  • Daniellian, P.S., White, R., Lees, J.A. and Parker, M.G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 1992; 11: 1025–1033

    Google Scholar 

  • Dankbar, B., Sohn, M., Nieschlag, E. and Gromoll, J. Quantification of androgen receptor and follicle stimulating hormone receptor mRNA levels in human and monkey testes by a ribonuclease protection assay. Int. J. Androl. 1995; 18: 88–96

    Article  PubMed  CAS  Google Scholar 

  • Darimont, B.D., Wagner, R.L., Apriletti, J.W., Stallcup, M.R., Kushner, P.J., Baxter, J.D., Fletterick, R.J. and Yamamoto, K.R. Structure and specificity of nuclear receptorcoactivator interactions. Genes Dev. 1998; 12: 3343–3356

    Article  PubMed  CAS  Google Scholar 

  • Dauvois, S., White, R. and Parker, M.G. The antiestrogen ICI182780 disrupts estrogen receptor cytonucleoplasmic shuttling. Journal of Cell Science 1993; 106: 1377–1388

    PubMed  CAS  Google Scholar 

  • Davie, J.R. and Spencer, V.A. Control of histone modifications. J. Cell. Biochem. Suppl. 1999; 32/33: 141–148

    Article  Google Scholar 

  • De Bellis, A., Quigley, C.A., Marschke, K.B., El-Awady, M., Lane, M.V., Smith, E.P., Sar, M., Wilson, E.M. and French, F.S. Characterization of mutant androgen receptors causing partial androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 1994; 78: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Durand, B., Saunders, M., Gaudon, C, Roy, B., Losson, R. and Chambon, P. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and the influence of the nature of the response element on AF-2 activity. EMBO J. 1994; 13: 5370–5382

    PubMed  CAS  Google Scholar 

  • Edwards, A., Hammond, H.A., Jun, L., Caskey, T. and Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992; 12: 241–253

    Article  PubMed  CAS  Google Scholar 

  • Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895

    Article  PubMed  CAS  Google Scholar 

  • Faber, P.W., van Rooij, H.C., van der Korput, H.A.G.M., Baarends, W.M., Brinkman, A.O., Gootegoed, J.A. and Trapman, J. Characterization of the human androgen receptor transcription unit. J. Biol. Chem. 1991; 266: 10743–10749

    CAS  Google Scholar 

  • Faber, P.W., van Rooij, H.C.J., Schipper, H.J., Brinkmann, A.O. and Trapman, J. Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen promoter: the role of Spl. J. Biol. Chem. 1993; 268: 9296–9301

    PubMed  CAS  Google Scholar 

  • Fang, Y., Fliss, A.E., Robins, D.M. and Caplan, A.J. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J. Biol. Chem. 1996; 271: 28697–28702

    Article  PubMed  CAS  Google Scholar 

  • Freedman, L.P. Anatomy of the Steroid Receptor Zinc Finger Region. Endocrine Reviews 1992; 13: 129–145

    PubMed  CAS  Google Scholar 

  • Freeman, B.C., Felts, S.J., Toft, D.O. and Yamamoto, K.R. The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes and Development 2000; 14: 422–434

    PubMed  CAS  Google Scholar 

  • Froesch, B.A., Takayama, S. and Reed, J.C. BAG-1L protein enhances androgen receptor function. J. Biol. Chem. 1998; 273: 11660–11666

    Article  PubMed  CAS  Google Scholar 

  • Fronsdal, K., Engedal, N., Slagsvold, T. and Saatcioglu, F. CREB binding protein is a coactivator for the androgen receptor that mediates cross-talk with AP-1. J. Biol. Chem. 1998; 273: 31853–31859

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, N., Yeh, S., Kang, H., Inui, S., Chang, H.C., Mizokami, A. and Chang, C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J. Biol. Chem. 1999; 274: 8316–8321

    Article  PubMed  CAS  Google Scholar 

  • Galigniana, M.D., Housley, P.R., DeFranco, D.B. and Pratt, W.B. Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires an intact cytoskeleton. J. Biol. Chem. 1999; 274: 16222–16227

    Article  PubMed  CAS  Google Scholar 

  • Gao, T., Marcelli, M. and McPhaul, M.J. Transcriptional activation and transient expression of the human androgen receptor. Journal of Steroid Biochemistry and Molecular Biology 1996; 59: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Gao, T. and McPhaul, M.J. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mo. Endcrinol. 1998; 12: 654–663

    Article  CAS  Google Scholar 

  • Giguere, V. Orphan Nuclear Receptors: from gene to function. Endocr. Rev. 1999; 20: 689–725

    Article  PubMed  CAS  Google Scholar 

  • Gorlich, D. and Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999; 15: 607–660

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, B., Beitel, L.E. and Trifiro, M.A. Variable expressivity and mutation databases: the androgen receptor gene mutations database. Hum. Mutat. 2001; 17: 382–388

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, B., Vasiliou, D.M., Lumbroso, R., Beitel, L.K., Pinsky, L. and Trifiro, M.A. Analysis of exon 1 mutations in the androgen receptor. Human Mutat. 1999; 14: 527–539

    Article  CAS  Google Scholar 

  • Green, S. and Chambon, P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 1988; 4: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M.E. and Ziff, E.B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 1984; 311: 433–438

    Article  PubMed  CAS  Google Scholar 

  • Gregory, C.W., Hamil, K.G., Kim, D., Hall, S.H., Pretlow, T.G., Mohler, J.L. and French, F.S. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res. 1998; 58: 5718–5724

    PubMed  CAS  Google Scholar 

  • Guiochon-Mantel, A., Lescop, P., Christin-Maitre, S., Loosfelt, H., Perrot-Applanat, M. and Milgrom, E. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J. 1991; 10: 3851–3859

    PubMed  CAS  Google Scholar 

  • Guo, Y. and Kyprianou, N. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 1999; 59: 1366–1371

    PubMed  CAS  Google Scholar 

  • Hakimi, J.M., Schoenberg, M.P., Rondinelli, R.H., Piantadosi, S. and Barrack, E.R. Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clinical Cancer Research 1997; 3: 1599–1608

    PubMed  CAS  Google Scholar 

  • Hardy, D.O., Scher, H.I., Bogenreider, T., Sabbatini, P., Zhang, Z., Nanus, D.M. and Catterall, J.F. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J. Clin. Endocrinol. Metab. 1996; 81: 4400–4405

    Article  PubMed  CAS  Google Scholar 

  • Hayes, S.A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D.M., ten Dijke, P. and Sun, Z. Smad 3 represses androgen-receptor mediated transcription. Cancer Res. 2001; 61: 2112–2118

    PubMed  CAS  Google Scholar 

  • He, B., Kemppainen, J.A., Voegel, J.J., Gronemeyer, H. and Wilson, E.M. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH2-terminal domain. J. Biol. Chem. 1999; 274: 37219–37225

    Article  PubMed  CAS  Google Scholar 

  • He, B., Kemppainen, J.A. and Wilson, E.M. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 2000; 275: 22986–22994

    Article  PubMed  CAS  Google Scholar 

  • Heinlein, C.A. and Chang, C. Role of chaperones in nuclear translocation and transactivation of steroid receptors. Endocrine 2001; 14: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Hiort, O., Holerhus, P.-M., Horter, T., Schulze, W., Kremke, B., Bals-Pratsch, M., Sinnecker, G.H.G. and Kruse, K. Significance of mutations in the androgen receptor gene in males with idiopathic infertility. J. Clin. Endocrinol. Metab. 2000; 85: 2810–2815

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg, S.M. and Evans, R.M. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 1988; 55: 899–906

    Article  PubMed  CAS  Google Scholar 

  • Horlein, A.J., Naar, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C.K. and Rosenfeld, M.G. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–403

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, P.W. and Chang, C. Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J. Biol. Chem. 1999; 274: 22373–22379

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, P.W., Lin, D., Nakao, R. and Chang, C. The linkage of Kennedy’s Neuron Disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J. Biol. Chem. 1999; 274: 20229–20234

    Article  PubMed  CAS  Google Scholar 

  • Huggins, C, Stevens, R.E. and Hodges, C.V. Studies on prostate cancer. Arch. Surg. 1943; 43: 209–223

    Article  Google Scholar 

  • Husmann, D.A., Wilson, CM., McPhaul, M.J., Tilley, W.D. and Wilson, J.D. Antipeptide antibodies to two distinct regions of the androgen receptor localize the receptor protein to the nuclei of target cells in the rat and human prostate. Endocrinology 1990; 126: 2359–2368

    Article  PubMed  CAS  Google Scholar 

  • Ikonen, T., Palvimo, J.J. and Janne, O.A. Interaction between the amino and carboxyl terminal regions of rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J. Biol. Chem. 1997; 272: 29821–29828

    Article  PubMed  CAS  Google Scholar 

  • Jackson, T.A., Richer, J.K., Bain, D.L., Takimoto, G.S., Tung, L. and Horwitz, K.B. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the co-repressors N-CoR and SMRT. Mol. Endocrinol. 1997; 11: 693–705

    Article  PubMed  CAS  Google Scholar 

  • Jarrard, D.F., Kinoshita, H., Shi, Y., Sandefur, C, Hoff, D., Meisner, L.F., Chang, C, Herman, J.G., Isaacs, W.B. and Nassif, N. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Research 1998; 58: 5310–5314

    PubMed  CAS  Google Scholar 

  • Jenster, G., de Ruiter, P.E., van der Korput, H.A.G.M., Kuiper, G.G.J.M, Trapman, J. and Brinkmann, A.O. Changes in the abundance of androgen receptor isotypes: effects of ligand treatment, glutamine stretch variation, and mutation of putative phosphorylation sites. Biochemistry 1994; 33: 14064–14072

    Article  PubMed  CAS  Google Scholar 

  • Jenster, G., Trapman, J. and Brinkmann, A.O. Nuclear import of the androgen receptor. Biochem. J. 1993; 293: 761–768

    PubMed  CAS  Google Scholar 

  • Jenster, G., van der Korput, H.A.G.M., Trapman, J. and Brinkman, A.O. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J. Biol. Chem. 1995; 270: 7341–7346

    Article  PubMed  CAS  Google Scholar 

  • Jenster, G., van der Korput, H.A.G.M., van Vroonhoven, C., van der Kwast, T.H., Trapman, J. and Brinkman, A.O. Domains of the androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol. 1991; 5: 1396–1404

    Article  PubMed  CAS  Google Scholar 

  • Kahana, J.A. and Cleveland, D.W. Beyond nuclear transport: Ran-GTP as a determinant of spindle assembly. J. Cell Biol. 1999; 146: 1205–1209

    Article  PubMed  CAS  Google Scholar 

  • Kamei, Y., et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414

    Article  PubMed  CAS  Google Scholar 

  • Kamimura, S., Gallieni, M., Zhong, M., Beron, W., Slatopolsky, E. and Dusso, A. Microtubules mediate cellular 25-hydroxyvitamin D3 trafficking and the genomic response to 1,25-dihydroxyvitamin D3 in human monocytes. J. Biol. Chem. 1995; 270: 22160–22166

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.-Y., Lin, H.-K., Hu, Y.-C, Yeh, S., Huang, K.-E. and Chang, C. From transforming growth factor beta signaling to androgen action: identification of Smad 3 as an androgen receptor coregualtor in prostate cancer cells. Proc. Natl. Acad. Sci. USA 2001; 98: 3018–3023

    Article  PubMed  CAS  Google Scholar 

  • Kasper, S., Rennie, P.S., Bruchovsky, N., Sheppard, P.C., Cheng, H., Lin, L., Shiu, R.P., Snock, R. and Matusik, R.J. Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene. J. Biol. Chem. 1994; 269: 31763–31769

    PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani, P., Trifiro, M.A. and Pinsky, L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum. Mol. Genet. 1995; 4: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Keller, E.T., Ershler, W.B. and Chang, C. The androgen receptor: a mediator of diverse responses. Front. Biosci. 1996; 1: d59–71

    Google Scholar 

  • Kerr, J.E., Allore, R.J., Beck, S.G. and Handa, R.J. Distribution and hormonal regulation of androgen receptor (AR) and AR messinger ribonucleic acid in the rat hippocampus. Endocrinology 1995; 136: 3213–3221

    Article  PubMed  CAS  Google Scholar 

  • Kim, I.Y., Ahn, H.J., Lang, S., Oefelein, M.G., Oyasu, R., Kozlowski, J.M. and Lee, C. Loss of expression of TGF beta receptors is associated with poor prognosis in prostate cancer patients. Clin. Cancer Res. 1998; 4: 1625–1630

    PubMed  CAS  Google Scholar 

  • Kim, I.Y., Ahn, H.J., Zelner, D.J., Shaw, J.W., Lang, S., Kato, M., Oefelein, M.G., Miyazono, K., Nemeth, J.A., Kozlowski, J.M. and Lee, C. Loss of expression of transforming growth factor beta type I and II receptors correlates with tumor grade in human prostate cancer tissues. Clin. Cancer Res. 1996; 2: 1255–1261

    PubMed  CAS  Google Scholar 

  • King, W.J. and Greene, G.L. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 1984; 307: 745–747

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch, R. and Garabedian, M.J. Role for Hsp-90-associated cochaperone p23 in estrogen receptor signal transduction. Mol. Cell. Biol. 1999; 19: 3748–3759

    PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Kume, A., Li, M., Doyu, M., Hata, M., Ohtsuka, K. and Sobue, G. Chaperones Hsp70 and Hsp40 suppress aggregate formation in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem. 2000; 275: 8772–8778

    Article  PubMed  CAS  Google Scholar 

  • Korzus, E., Torchia, J., Rose, D.W., Xu, L., Kurokawa, R., Mclnerney, E.M., Mullen, T.M., Glass, C.K. and Rosenfeld, M.G. Transcription factor specific requirements for coactivators and their acetylase functions. Science 1998; 279: 703–707

    Article  PubMed  CAS  Google Scholar 

  • Krongrad, A., Wilson, CM., Wilson, J.D., Allman, D.R. and McPhaul, M.J. Androgen increases androgen receptor protein while decreasing receptor mRNA in LNCaP cells. Molecular and Cellular Endocrinology 1991; 76: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, E.J., Kurnot, R.A., Sesterhenn, I.A., Chang, E.H. and Moul, J.W. Expression of the cerbB-2 (Her2/neu) oncoprotein in human prostatic carcinoma. J. Urol. 1993; 150: 1427–1433

    PubMed  CAS  Google Scholar 

  • Kuiper, G.G.J.M., deRuiter, P.E., Grootegoed, J.A. and Brinkmann, A.O. Synthesis and post-translational modification of the androgen receptor in LNCaP cells. Mol. Cell. Endocrinol. 1991;80:65–73

    Article  PubMed  CAS  Google Scholar 

  • Kuiper, G.G.J.M., Faber, P.W., van Rooij, H.C.J., van der korput, J.A.G.M., Ris-Stalpers, C, Klaasen, P., Trapman, J. and Brinkman, A.O. Structural organization of the human androgen receptor gene. J. Mol. Endocrinol. 1989; 2: R2–R4

    Article  Google Scholar 

  • Kupfer, S.R., Marschke, K.B., Wilson, E.M. and French, F.S. Receptor accessory factor enhances specific DNA binding of androgen and glucocorticoid receptors. J. Biol. Chem. 1993; 268: 17519–17527

    PubMed  CAS  Google Scholar 

  • Kutay, U., Bischoff, F.R., Kostka, S., Kraft, R. and Gorlich, D. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90: 1061–1071

    Article  PubMed  CAS  Google Scholar 

  • La Spada, A., Wilson, E.M., Lubahn, D.B., Harding, A.E. and Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79

    Article  PubMed  Google Scholar 

  • Lamph, W.W., Wamsley, P., Sassone-Corsi, P. and Verma, I.M. Induction of proto-oncogene JUN/AP-1 by serum and TPA. Nature 334; 334: 629–631

    Google Scholar 

  • Landis, S.H., Murray, T., Bolden, S. and Wingo, P.A. Cancer Statistics. CA-Cancer. J. Clin. 1999; 49: 8–31

    CAS  Google Scholar 

  • Lee, D.K., Duan, H.O. and Chang, C. From androgen receptor to the general transcription factor TFIIH: identification of cdk activating kinase (CAK) as an androgen receptor NH2-terminal associated coactivator. J. Biol. Chem. 2000; 275: 9308–9313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heinlein, C.A., Chawnshang, C. (2002). Structural and Functional Analysis of the Androgen Receptor. In: Chang, C. (eds) Androgens and Androgen Receptor. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1161-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1161-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5422-2

  • Online ISBN: 978-1-4615-1161-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics