Skip to main content

The Work of Contraction: Myosin ATPase

  • Chapter
  • 197 Accesses

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 11))

Abstract

The fractional cell volume of sarcomeres in the myocyte is very high, ∼0.5 (it is close to 0.8 in some skeletal muscles). Sarcomeres are composed of filaments responsible for force generation and muscle shortening. The thick filaments contain primarily myosin and the thin filaments contain primarily actin and the regulatory proteins tropomyosin and troponin. Sarcomeres also contain other filaments containing large proteins such as titin and nebulin that provide scaffolding and the viscoelastic elements responsible for relaxation. During contraction of a single sarcomere, the I-bands (I for isotropic) containing the thin filaments shorten and move toward the center of the sarcomere while the A-band (A for anisotropic) essentially stays in place. Thus, during a single contraction cycle, the distance between the Z-bands shortens and then returns to normal resting length (∼2.2 nm). The Z-band also undergoes dynamic rearrangement during the contractile cycle (1). The contraction cycle is the story of protein-protein interactions and the use of the free energy of ATP hydrolysis to accomplish both subtle changes in protein conformation and movement of protein assemblies in space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schroeter JP, Bretaudiere JP, Sass RL, Goldstein MA. Three-dimensional structure of the Z band in a normal mammalian skeletal muscle. J Cell Biol. 1996;133:571–583.

    Article  PubMed  CAS  Google Scholar 

  2. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80:853–924.

    PubMed  CAS  Google Scholar 

  3. Duke T. Cooperativity of myosin molecules through strain-dependent chemistry. Philos Trans R Soc Lond B Biol Sci. 2000;355:529–538.

    Article  PubMed  CAS  Google Scholar 

  4. Moss RL. Ca2+ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins. Circ Res. 1992;70:865–884.

    Article  PubMed  CAS  Google Scholar 

  5. Weisberg A, Winegrad S. Relation between crossbridge structure and actomyosin ATPase activity in rat heart. Circ Res. 1998;83:60–72.

    Article  PubMed  CAS  Google Scholar 

  6. Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol. 1999;11:18–25.

    Article  PubMed  CAS  Google Scholar 

  7. Tobacman LS, Butters CA. A new model of cooperative myosin-thin filament binding. J Biol Chem. 2000;275:27587–27593.

    PubMed  CAS  Google Scholar 

  8. WJ Dong, Wang CK, Gordon AM, Rosenfeld SS, Cheung HC. A kinetic model for the binding of Cat+ to the regulatory site of troponin from cardiac muscle. J Biol Chem. 1997; 272:19229–19235.

    Article  PubMed  CAS  Google Scholar 

  9. Lehman W, Rosol M, Tobacman LS, Craig R. Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J Mol Biol. 2001;307:739–744.

    Article  PubMed  CAS  Google Scholar 

  10. Huxley AF. Muscle structure and theories of contraction. Prog Biophysics Biophys Chem. 1957;7:255–318.

    CAS  Google Scholar 

  11. Barany M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967;50:Suppl:197–218.

    Article  PubMed  Google Scholar 

  12. Morkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech. 2000;50:522–531.

    Article  PubMed  CAS  Google Scholar 

  13. Di Nardo P, Fiaccavento R, Natali A, Minieri M, Sampaolesi M, Fusco A, Janmot C, Cuda G, Carbone A, Rogliani P, Peruzzi G. Embryonic gene expression in nonoverloaded ventricles of hereditary hypertrophic cardiomyopathic hamsters. Lab Invest. 1997;77:489–502.

    PubMed  Google Scholar 

  14. Chen Z, Higashiyama A, Yaku H, Bell S, Fabian J, Watkins MW, Schneider DJ, Maughan DW, LeWinter MM. Altered expression of troponin T isoforms in mild left ventricular hypertrophy in the rabbit. JMo! Cell Cardiol. 1997;29:2345–2354.

    Article  CAS  Google Scholar 

  15. Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;280:H1814–1820.

    PubMed  CAS  Google Scholar 

  16. He ZH, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys J. 2000;79:945–961.

    Article  PubMed  CAS  Google Scholar 

  17. Cummins P, Russell G. A comparison of myosin light chain subunits in the atria and ventricles of mammals. Comp Biochem Physiol B. 1986;84:343–348.

    Article  PubMed  CAS  Google Scholar 

  18. Hoh JF. Neural regulation of mammalian fast and slow muscle myosins: an electrophoretic analysis. Biochemistry. 1975;14:742–747.

    Article  PubMed  CAS  Google Scholar 

  19. Block SM. Fifty ways to love your lever: myosin motors. Cell. 1996;87:151–157.

    Article  PubMed  CAS  Google Scholar 

  20. Warshaw DM. The in vitro motility assay: a window into the myosin molecular motor. News Physiol Sci. 1996;11:1–7.

    CAS  Google Scholar 

  21. Yanagida T, Iwane AH. A large step for myosin. Proc Natl Acad Sci U S A. 2000;97:9357–9359.

    Article  PubMed  CAS  Google Scholar 

  22. Baker JE, Thomas DD. A thermodynamic muscle model and a chemical basis for A.V. Hill’s muscle equation. J Muscle Res Cell Motil. 2000;21:335–344.

    Article  PubMed  CAS  Google Scholar 

  23. Sugiura S, Kobayakawa N, Fujita H, Yamashita H, Momomura S, Chaen S, Omata M, Sugi H. Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation. Circ Res. 1998;82:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  24. LeWinter MM, Suga H, Watkins MW, eds. Cardiac energetics: from emax to pressure-volume area. Boston/London/Dordrecht: Kluwer Academic Publisher; 1995.

    Book  Google Scholar 

  25. Cooke R, Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985;48:789–798.

    Article  PubMed  CAS  Google Scholar 

  26. Pate E, Cooke R. A model of crossbridge action: the effects of ATP, ADP and Pi. J Muscle Res Cell Motil. 1989;10:181–196.

    Article  PubMed  CAS  Google Scholar 

  27. Tian R, Christe ME, Spindler M, Hopkins JC, Halow JM, Camacho SA, Ingwall JS. Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J Clin Invest. 1997;99:745–751.

    Article  PubMed  CAS  Google Scholar 

  28. Tian R, Nascimben L, Ingwall JS, Lorell BH. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation. 1997;96:1313–1319.

    Article  PubMed  CAS  Google Scholar 

  29. Lompre AM, Schwartz K, d’Albis A, Lacombe G, Van Thiem N, Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979;282:105–107.

    Article  PubMed  CAS  Google Scholar 

  30. Yazaki Y, Tsuchimochi H, Kuro-o M, Kurabayashi M, Isobe M, Ueda S, Nagai R, Takaku F. Distribution of myosin isozymes in human atrial and ventricular myocardium: comparison in normal and overloaded heart. Eur Heart J. 1984;5:Suppl F:103–110.

    Article  PubMed  Google Scholar 

  31. Tsuchimochi H, Kuro-o M, Koyama H, Kurabayashi M, Sugi M, Takaku F, Furuta S, Yazaki Y. Heterogeneity of beta-type myosin isozymes in the human heart and regulational mechanisms in their expression. Immunohistochemical study using monoclonal antibodies. J Clin Invest. 1988;81:110–118.

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmann U, Axmann C, Palm N. Atrial and ventricular myosins from human hearts. II. Isoenzyme distribution after myocardial infarction. Basic Res Cardiol. 1987;82:359–369.

    Article  PubMed  CAS  Google Scholar 

  33. Morano I. Tuning the human heart molecular motors by myosin light chains. J Mol Med. 1999;77:544–555.

    Article  PubMed  CAS  Google Scholar 

  34. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731–734.

    Article  PubMed  CAS  Google Scholar 

  35. Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG, Ingwall JS. Diastolic dysfunction and altered energetics in the aMHC4031+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101:1775–1783.

    Article  PubMed  CAS  Google Scholar 

  36. Javadpour MM, Tardiff JC, Ingwall JS. Mutation in the Thin Filament Protein cTnT Effects Contractile Function and Energetics. Circulation. 2000;102:II98.

    Google Scholar 

  37. Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104:469–481.

    Article  PubMed  CAS  Google Scholar 

  38. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophie cardiomyopathy. N Engl J Med. 1995;332:1058–1064.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingwall, J.S. (2002). The Work of Contraction: Myosin ATPase. In: ATP and the Heart. Basic Science for the Cardiologist, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1093-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1093-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5391-1

  • Online ISBN: 978-1-4615-1093-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics