ATP Synthesis Pathways: Phosphotransferase Reactions

  • Joanne S. Ingwall
Part of the Basic Science for the Cardiologist book series (BASC, volume 11)


Under conditions when ATP production via glycolysis and oxidative phosphorylation is not fast enough to match ATP utilization rates, muscle cells use other ways to synthesize ATP. Two enzymes, which transfer the phosphoryl group (commonly called kinases) function in this way in the heart. Creatine kinase (ATP, creatine phosphotransferase) catalyzes the reversible transfer of the phosphoryl group between phosphocreatine (PCr) and ADP. The reversible adenylate kinase reaction transfers the phosphoryl group between AMP and ATP. The topics for this chapter are:
  • Creatine Kinase
    • Creatine transport

    • Changes in the creatine kinase system in ischemic and failing myocardium

  • Adenylate Kinase


Creatine Kinase Adenylate Kinase Creatine Kinase Activity Contractile Reserve Creatine Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wallimann T, Dolder M, Schlattner U, Eder M, Homemann T, O’Gorman E, Ruck A, Brdiczka D. Some new aspects of (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.Biofactors.1998;8:229–234.PubMedCrossRefGoogle Scholar
  2. 2.
    Schlattner U, Dolder M, Wallimann T, Tokarska-Schlattner M. Mitochondria] creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium.JBiol Chem.2001;276:48027–48030.Google Scholar
  3. 3.
    Crawford RM, Ranki Hi, Botting CH, Budas GR, Jovanovic A. Creatine kinase is physically associated with the cardiac ATP-sensitive K+channel in vivo.FASEB J.2002;16:102–104.PubMedGoogle Scholar
  4. 4.
    Saupe KW, Spindler M, Hopkins JC, Shen W, S. U. Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart.J Biol Chem.2000;275:19742–19746.PubMedCrossRefGoogle Scholar
  5. 5.
    Saks VA. Creatine kinase isoenzymes and the control of cardiac contraction. In: Jacobus WE, Ingwall JS, eds.Heart creatine kinase.Baltimore: Williams and Wilkins; 1980:109–124.Google Scholar
  6. 6.
    Krause SM, Jacobus WE. Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase.JBiol Chem.1992;267:2480–2486.Google Scholar
  7. 7.
    Saupe KW, Spindler M, Tian R, Ingwall JS. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase.Circ Res.1998;82:898–907.PubMedCrossRefGoogle Scholar
  8. 8.
    Tian R, Ingwall JS. The molecular energetics of the failing heart from animal models-small animal models.Heart Failure Review.1999;4:235–253.Google Scholar
  9. 9.
    van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, ter Lank J, Wieringa B. Skeletal mudes of mice deficient in muscle creatine kinase lack burst activity.Cell.1993;74:621–631.PubMedCrossRefGoogle Scholar
  10. 10.
    Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A. Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure.Circ Res.1999;84:1137–1143.PubMedCrossRefGoogle Scholar
  11. 11.
    Menin L, Panchichkina M, Keriel C, Olivares J, Braun U, Seppet EK, Saks VA. Macrocompartmentation of total creatine in cardiomyocytes revisited.Mol Cell Biochem.2001;220:149–159.PubMedCrossRefGoogle Scholar
  12. 12.
    Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC. Extracellular creatine regulates creatine transport in rat and human muscle cells.Proc Natl Acad Sci USA.1988;85:807–811.PubMedCrossRefGoogle Scholar
  13. 13.
    Ingwall JS, Neubauer S. The energetics of the failing heart.Heart Failure Reviews.1999;4.Google Scholar
  14. 14.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease.N Engl J Med.1990;323:1593–1600.PubMedCrossRefGoogle Scholar
  15. 15.
    Butterworth EJ, Evanochko WT, Pohost GM. The31P-NMR stress test: an approach for detecting myocardial ischemia.Ann Biomed Eng.2000;28:930–933.PubMedCrossRefGoogle Scholar
  16. 16.
    Buchthal SD, den Hollander JA, Merz CN, Rogers WJ, Pepine CJ, Reichek N, Sharaf BL, Reis S, Kelsey SF, Pohost GM. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms.N Engl J Med.2000;342:829–835.PubMedCrossRefGoogle Scholar
  17. 17.
    Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium.N Engl J Med.1985;313:1050–1054.PubMedCrossRefGoogle Scholar
  18. 18.
    Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD. Creatine kinase system in failing and nonfailing human myocardium.Circulation.1996;94:1894–1901.PubMedCrossRefGoogle Scholar
  19. 19.
    Sharkey SW, Elsperger KJ, Murakami M, Apple FS. Canine myocardial creatine kinase isoenzyme response to coronary artery occlusion.Am J Physiol.1989;256:H508–514.Google Scholar
  20. 20.
    Reiss NA, Kaye AM. Identification of the major component of the estrogen-induced protein of rat uterus as the BB isozyme of creatine kinase.J Biol Chem.1981;256:5741–5749.PubMedGoogle Scholar
  21. 21.
    Yamamichi H, Kasakura S, Yamamori S, Iwasaki R, Jikimoto T, Kanagawa S, Ohkawa J, Kumagai S, Koshiba M. Creatine kinase gene mutation in a patient with muscle creatine kinase deficiency.Clin Chem.2001;47:1967–1973.PubMedGoogle Scholar
  22. 22.
    Jung WI, Sieverding L, Breuer J, Hoess T, Widmaier S, Schmidt O, Bunse M, van Erckelens F, Apitz J, Lutz O, Dietze GJ.31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy.Circulation.1998;97:2536–2542.PubMedCrossRefGoogle Scholar
  23. 23.
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy.Circulation.1997;96:2190–2196.PubMedCrossRefGoogle Scholar
  24. 24.
    Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF, Ingwall JS. Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine.Circulation.1999;100:2113–2118.PubMedCrossRefGoogle Scholar
  25. 25.
    Neubauer S, Remkes H, Spindler M, Horn M, Weismann F, Prestle J, Walzel B, Ertl G, Hasenfuss G, Wallimann T. Down regulation of the Na()-creatine co-transporter in failing human myocardium and in experimental heart failure.Circulation.1999;100:1847–1850.PubMedCrossRefGoogle Scholar
  26. 26.
    Tian R, Ingwall JS. Energetic basis for reduced contractile reserve in isolated rat hearts.A J Physiol.1996;270:H1207–1216.Google Scholar
  27. 27.
    Tian R, Nascimben L, Kaddurah-Daouk R, Ingwall JS. Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters.J Mol Cell Cardiol.1996;28:755–765.PubMedCrossRefGoogle Scholar
  28. 28.
    Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure.Circulation.1995;91:1824–1833.PubMedCrossRefGoogle Scholar
  29. 29.
    Janssen E, Dzeja PP, Oerlemans F, Simonetti AW, Heerschap A, de Haan A, Rush PS, Terjung RR, Wieringa B, Terzic A. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement.EMBO J.2000;19:6371–6381.PubMedCrossRefGoogle Scholar
  30. 30.
    Pucar D, Janssen E, Dzeja PP, Juranic N, Macura S, Wieringa B, Terzic A. Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress.JBiol Chem.2000;275:41424–41429.CrossRefGoogle Scholar
  31. 31.
    Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.Proc Nail Acad Sci USA.2001;98:7623–7628.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Joanne S. Ingwall
    • 1
    • 2
  1. 1.Division of Cardiovascular Medicine Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations