Advertisement

Creatine and Ginkgo Biloba Use in Sports and Health: A Knowledge Utilization Approach

  • Jonathan D. Geiger
  • Phillipe Legace-Wiens
  • Stephane Bastianetto
  • Remi Quirion
Chapter
  • 201 Downloads

Abstract

Brain neurons rely on a constant supply of blood glucose, and to a lesser extent glucose derived from astrocyte stores of glycogen, for energy. Such energy stores in brain are not only required for optimal brain performance, but increasingly have been shown to guard against insult-induced neuronal injury. Proper diets and dietary supplements are neuroprotective and enhance brain performance. Two widely taken dietary supplements increasingly used in this context are creatine (monohydrate) as well as Ginkgo biloba and extracts there from. Creatine is an amino acid produced in the body that is readily obtained in diet. Sport and health enthusiasts looking to enhance athletic performance and/or alter body composition have increasingly embraced supplementation of diets with creatine. Recent evidence has demonstrated clearly in cellular and animal models of acute and chronic neurodegenerative disorders that creatine is an effective neuroprotectant and accordingly creatine use among patient populations has increased dramatically. Although the mechanism by which creatine exerts its neuroprotectant effects are not fully elucidated, protection may result from enhanced levels of high-energy phosphate in the form of phosphocreatine and from mitochondrial stabilization. Although Ginkgo biloba is an unrelated substance, it too is increasingly used in the context of sports and health. Ginkgo biloba has been shown to enhance cognitive function and protect against insults relevant to the pathogenesis of, for example, Alzheimer’s disease and stroke. Similar to creatine, the protective actions of Ginkgo biloba may be due to anti-oxidant and mitochondrial stabilization properties. Issues raised in this chapter may provide the reader an ability to make informed decisions on an individual basis to take (or not) these particular substances.

Keywords

creatine Ginkgo biloba neuroprotection reactive oxygen species mitochondria athletic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams GR, Bodell PW, Baldwin KM (1995) Running performance and cardiovascular capacity are not impaired in creatine-depleted rats. J Appl Physiol 79:1002–1007.PubMedGoogle Scholar
  2. Aksenov MY, Aksenova MV, Payne RM, Smith CD, Markesbery WR, Carney JM (1997) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease. Exp Neurol 146:458–465.PubMedCrossRefGoogle Scholar
  3. Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Bogdanov MB, Kaddurah-Daouk R, Beal MF (2001) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77:383–390.PubMedCrossRefGoogle Scholar
  4. Balestrino M (1995) Pathophysiology of anoxic depolarization: new findings and a working hypothesis. J Neurosci Methods 59:99–103.PubMedCrossRefGoogle Scholar
  5. Balestrino M, Rebaudo R, Lunardi G (1999) Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 816:124–130.PubMedCrossRefGoogle Scholar
  6. Balsom PD, Soderlund K, Ekblom B (1994) Creatine in humans with special reference to creatine supplementation. Sports Med 18:268–280.PubMedCrossRefGoogle Scholar
  7. Bastianetto S, Ramassamy C, Dore S, Christen Y, Poirier J, Quirion R (2000a) The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci 12:1882–1890.PubMedCrossRefGoogle Scholar
  8. Bastianetto S, Zheng WH, Quirion R (2000b) The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J Neurochem 74:2268–2277.PubMedCrossRefGoogle Scholar
  9. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304.PubMedCrossRefGoogle Scholar
  10. Benjamin J, Muir T, Briggs K, Pentland B (2001) A case of cerebral haemorrhage-can Ginkgo biloba be implicated? Postgrad Med J 77:112–113.PubMedCrossRefGoogle Scholar
  11. Beriet HH (1969) Creatine of mouse brain: evidence of active uptake from blood. Experientia 25:796–797.CrossRefGoogle Scholar
  12. Beutner G, Ruck A, Riede B, Brdiczka D (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18.PubMedCrossRefGoogle Scholar
  13. Bosco C, Tihanyi J, Pucspk J, Kovacs I, Gabossy A, Colli R, Pulvirenti G, Tranquilli C, Foti C, Viru M, Viru A (1997) Effect of oral creatine supplementation on jumping and running performance. Int J Sports Med 18:369–372.PubMedCrossRefGoogle Scholar
  14. Bottomley PA, Cousins JP, Pendrey DL, Wagle WA, Hardy CJ, Eames FA, McCaffrey RJ, Thompson DA (1992) Alzheimer dementia: quantification of energy metabolism and mobile phosphoesters with P-31 NMR spectroscopy. Radiology 183:695–699.PubMedGoogle Scholar
  15. Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86:193–201. Brewer GJ, Wallimann TW (2000) Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 74:1968–1978.Google Scholar
  16. Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 76:425–434.PubMedCrossRefGoogle Scholar
  17. Carter AJ, Muller RE, Pschorn U, Stransky W (1995) Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem 64:2691–2699.PubMedCrossRefGoogle Scholar
  18. Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL (1996) Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 271:E31–37.PubMedGoogle Scholar
  19. Cecil KM, Salomons GS, Ball WS, Jr., Wong B, Chuck G, Verhoeven NM, Jakobs C, DeGrauw TJ (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49:401–404.PubMedCrossRefGoogle Scholar
  20. Chanutin A (1927) A Study of the effect of creatine on growth and its distribution in the tissues of normal rats. J Biol Chem 75:549–557.Google Scholar
  21. Curtis-Prior P, Vere D, Fray P (1999) Therapeutic value of Ginkgo biloba in reducing symptoms of decline in mental function. J Pharm Pharmacol 51:535–541.PubMedCrossRefGoogle Scholar
  22. Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277:R698–704.PubMedGoogle Scholar
  23. Deshpande SB, Fukuda A, Nishino H (1997) 3-Nitropropionic acid increases the intracellular Ca2+ in cultured astrocytes by reverse operation of the Na+-Ca2+ exchanger. Exp Neurol 145:38–45.PubMedCrossRefGoogle Scholar
  24. Diamond BJ, Shiflett SC, Feiwel N, Matheis RJ, Noskin O, Richards JA, Schoenberger NE (2000) Ginkgo biloba extract: mechanisms and clinical indications. Arch Phys Med Rehabil 81:668–678.PubMedGoogle Scholar
  25. Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL (1995) The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand 153:207–209.PubMedCrossRefGoogle Scholar
  26. Felber S, Skladal D, Wyss M, Kremser C, Koller A, Sperl W (2000) Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 3IP magnetic resonance spectroscopy study. Neurol Res 22:145–150.PubMedGoogle Scholar
  27. Feldman EB (1999) Creatine: a dietary supplement and ergogenic aid. Nutr Rev 57:45–50.PubMedCrossRefGoogle Scholar
  28. Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397.PubMedGoogle Scholar
  29. Gregory PJ (2001) Seizure associated with Ginkgo biloba? Ann Intern Med 134:344.PubMedGoogle Scholar
  30. Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184:427–437.PubMedCrossRefGoogle Scholar
  31. Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83:367–374.Google Scholar
  32. Holtzman D, Brown M, O’Gorman E, Allred E, Wallimann T (1998a) Brain ATP metabolism in hypoxia resistant mice fed guanidinopropionic acid. Dev Neurosci 20:469–477.PubMedCrossRefGoogle Scholar
  33. Holtzman D, Meyers R, O’Gorman E, Khait I, Wallimann T, Allred E, Jensen F (1997) In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog. Am J Physiol 272:C1567–1577.PubMedGoogle Scholar
  34. Holtzman D, Togliatti A, Khait I, Jensen F (1998b) Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr Res 44:410–414.PubMedCrossRefGoogle Scholar
  35. Horn M, Frantz S, Remkes H, Laser A, Urban B, Mettenleiter A, Schnackerz K, Neubauer S (1998) Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney. J Mol Cell Cardiol 30:277–284.PubMedCrossRefGoogle Scholar
  36. Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL (1996) Muscle creatine loading in men. J Appl Physiol 81:232–237.PubMedGoogle Scholar
  37. Ingwall JS (1976) Creatine and the control of muscle-specific protein synthesis in cardiac and skeletal muscle. Circ Res 38:1115–123.Google Scholar
  38. Juhn MS, Tarnopolsky M (1998) Oral creatine supplementation and athletic performance: a critical review. Clin J Sport Med 8:286–297.PubMedCrossRefGoogle Scholar
  39. Kaemmerer WF, Rodrigues CM, Steer CJ, Low WC (2001) Creatine-supplemented diet extends Purkinje cell survival in spinocerebellar ataxia type 1 transgenic mice but does not prevent the ataxic phenotype. Neuroscience 103:713–724.PubMedCrossRefGoogle Scholar
  40. Kasparova S, Dobrota D, Mlynarik V, Pham TN, Liptaj T, Horecky J, Braunova Z, Gvozdjakova A (2000) A study of creatine kinase reaction in rat brain under chronic pathological conditions-chronic ischemia and ethanol intoxication. Brain Res Bull 53:431–435.PubMedCrossRefGoogle Scholar
  41. Kass IS, Lipton P (1986) Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J Physiol 378:313–334.PubMedGoogle Scholar
  42. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5:347–350.PubMedCrossRefGoogle Scholar
  43. Kurtsoy A, Canbay S, Oktem IS, Akdemir H, Koc RK, Menku A, Tucer B (2000) Effect of EGb-761 on vasospasm in experimental subarachnoid hemorrhage. Res Exp Med (Berl) 199:207–215.Google Scholar
  44. Larsen RG, Dupeyron JP, Boulu RG (1978) [An experimental model of cerebral ischemia induced by microspheres in the rat. Effect of 2 Ginkgo biloba extracts and of naftidrofuryl]. Therapie 33:651–660.PubMedGoogle Scholar
  45. Laskowski MB, Chevli R, Fitch CD (1981) Biochemical and ultrastructural changes in skeletal muscle induced by a creatine antagonist. Metabolism 30:1080–1085.PubMedCrossRefGoogle Scholar
  46. Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC (1988) Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci U S A 85:807–811.PubMedCrossRefGoogle Scholar
  47. Luhmann HJ, Heinemann U (1992) Hypoxia-induced functional alterations in adult rat neocortex. J Neurophysiol 67:798–811.PubMedGoogle Scholar
  48. Malcon C, Kaddurah-Daouk R, Beal MF (2000) Neuroprotective effects of creatine administration against NMDA and malonate toxicity. Brain Res 860:195–198.PubMedCrossRefGoogle Scholar
  49. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149.PubMedCrossRefGoogle Scholar
  50. Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163.PubMedGoogle Scholar
  51. Mattson M (2000) Creatine: prescription for bad genes and a hostile environment? TINS 23:511.Google Scholar
  52. Mazzini L, Balzarini C, Colombo R, Mora G, Pastore I, De Ambrogio R, Caligari M (2001) Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results. J Neurol Sci 191:139–144.PubMedCrossRefGoogle Scholar
  53. Miwa H, Iijima M, Tanaka S, Mizuno Y (2001) Generalized convulsions after consuming a large amount of gingko nuts. Epilepsia 42:280–281.PubMedGoogle Scholar
  54. Mujika I, Padilla S (1997) Creatine supplementation as an ergogenic acid for sports performance in highly trained athletes: a critical review. Int J Sports Med 18:491–496.PubMedCrossRefGoogle Scholar
  55. Nanto-Salonen K, Komu M, Lundbom N, Heinanen K, Alanen A, Sipila I, Simell O (1999) Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology 53:303–307.PubMedCrossRefGoogle Scholar
  56. O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414:253–257.PubMedCrossRefGoogle Scholar
  57. O’Gorman E, Beutner G, Wallimann T, Brdiczka D (1996) Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochim Biophys Acta 1276:161–170.PubMedCrossRefGoogle Scholar
  58. Oken BS, Storzbach DM, Kaye JA (1998) The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 55:1409–1415.PubMedCrossRefGoogle Scholar
  59. Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53:161–176.PubMedGoogle Scholar
  60. Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 15:117–132.PubMedCrossRefGoogle Scholar
  61. Poortmans JR, Francaux M (1998) Renal dysfunction accompanying oral creatine supplements. Lancet 352:234.PubMedCrossRefGoogle Scholar
  62. Pritchard NR, Kalra PA (1998) Renal dysfunction accompanying oral creatine supplements. Lancet 351:1252–1253.PubMedCrossRefGoogle Scholar
  63. Rabchevsky AG, Fugaccia I, Sullivan PG, Scheff SW (2001) Creatine diet supplement does not improve functional recovery or tissue sparing after spinal cord injury. In: Society for Neuroscience Abstract.Google Scholar
  64. Ruda M, Samarenko MB, Afonskaya NI, Saks VA (1988) Reduction of ventricular arrhythmias by phosphocreatine (Neoton) in patients with acute myocardial infarction. Am Heart J 116:393–397.PubMedCrossRefGoogle Scholar
  65. Saltarelli MD, Bauman AL, Moore KR, Bradley CC, Blakely RD (1996) Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 18:524–534.PubMedCrossRefGoogle Scholar
  66. Scheff SW, Sullivan PG (1999) Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma 16:783–792.PubMedCrossRefGoogle Scholar
  67. Semenovsky ML, Shumakov VI, Sharov VG, Mogilevsky GM, Asmolovsky AV, Makhotina LA, Saks VA (1987) Protection of ischemic myocardium by exogenous phosphocreatine. II. Clinical, ultrastructural, and biochemical evaluations. J Thorac Cardiovasc Surg 94:762–769.PubMedGoogle Scholar
  68. Shields RP, Whitehair CK, Carrow RE, Heusner WW, Van Huss WD (1975) Skeletal muscle function and structure after depletion of creatine. Lab Invest 33:151–158.PubMedGoogle Scholar
  69. Simon DK, Standaert DG (1999) Neuroprotective therapies. Med Clin North Am 83:509–523, viii.PubMedCrossRefGoogle Scholar
  70. Sipila I, Rapola J, Simell O, Vannas A (1981) Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med 304:867–870.PubMedCrossRefGoogle Scholar
  71. Skogh M (1998) Extracts of Ginkgo biloba and bleeding or haemorrhage. Lancet 352:1145–1146.PubMedCrossRefGoogle Scholar
  72. Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224:169–181.PubMedCrossRefGoogle Scholar
  73. Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite- induced modification and inactivation. J Biol Chem 273:16694–16699.PubMedCrossRefGoogle Scholar
  74. Stockier S, Hanefeld F, Frahm J (1996a) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348:789–790.CrossRefGoogle Scholar
  75. Stockler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hanicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36:409–413.PubMedCrossRefGoogle Scholar
  76. Stockier S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996b) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58:914–922.Google Scholar
  77. Sullivan PG, Geiger JD, Mattson MP, Scheff SW (2000) Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 48:723–729.PubMedCrossRefGoogle Scholar
  78. Sullivan PG, Thompson MB, Scheff SW (1999) Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160:226–234.PubMedCrossRefGoogle Scholar
  79. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341.PubMedCrossRefGoogle Scholar
  80. Tarnopolsky M, Martin J (1999) Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 52:854–857.PubMedCrossRefGoogle Scholar
  81. Tran TT, Dai W, Sarkar HK (2000) Cyclosporin A inhibits creatine uptake by altering surface expression of the creatine transporter. J Biol Chem 275:35708–35714.PubMedCrossRefGoogle Scholar
  82. van Deursen J, Jap P, Heerschap A, ter Laak H, Ruitenbeek W, Wieringa B (1994) Effects of the creatine analogue beta-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. Biochim Biophys Acta 1185:327–335.PubMedCrossRefGoogle Scholar
  83. Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vanstapel F, Hespel P (1996) Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 80:452–457.PubMedGoogle Scholar
  84. Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P (1997) Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 83:2055–2063.PubMedGoogle Scholar
  85. Vielhaber S, Kaufmann J, Kanowski M, Sailer M, Feistner H, Tempelmann C, Elger CE, Heinze HJ, Kunz WS (2001) Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp Neurol 172:377–382.PubMedCrossRefGoogle Scholar
  86. Walker J (1960) Metabolic control of creatine biosynthesis. 1: effect of dietary creatine. J Biol Chem 235:2357–2361.PubMedGoogle Scholar
  87. Wei T, Ni Y, Hou J, Chen C, Zhao B, Xin W (2000) Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Pharmacol Res 41:427–433.PubMedCrossRefGoogle Scholar
  88. Wick M, Fujimori H, Michaelis T, Frahm J (1999) Brain water diffusion in normal and creatine-supplemented rats during transient global ischemia. Magn Reson Med 42:798–802.PubMedCrossRefGoogle Scholar
  89. Wilken B, Ramirez JM, Probst I, Richter DW, Hanefeld F (1998) Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res 43:8–14.PubMedCrossRefGoogle Scholar
  90. Willer B, Stucki G, Hoppeler H, Bruhlmann P, Krahenbuhl S (2000) Effects of creatine supplementation on muscle weakness in patients with rheumatoid arthritis. Rheumatology (Oxford) 39:293–298.CrossRefGoogle Scholar
  91. Wu WR, Zhu XZ (1999) Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxicity in C57 mice. Life Sci 65:157–164.PubMedCrossRefGoogle Scholar
  92. Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166.PubMedCrossRefGoogle Scholar
  93. Wyss M, Wallimann T (1994) Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133–134:51–66.PubMedCrossRefGoogle Scholar
  94. Xu CJ, Klunk WE, Kanfer JN, Xiong Q, Miller G, Pettegrew JW (1996) Phosphocreatine-dependent glutamate uptake by synaptic vesicles. A comparison with atp-dependent glutamate uptake. J Biol Chem 271:13435–13440.PubMedCrossRefGoogle Scholar
  95. Zhou LJ, Zhu XZ (2000) Reactive oxygen species-induced apoptosis in PC 12 cells and protective effect of bilobalide. J Pharmacol Exp Ther 293:982–988.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jonathan D. Geiger
    • 1
  • Phillipe Legace-Wiens
    • 1
  • Stephane Bastianetto
    • 2
  • Remi Quirion
    • 2
  1. 1.Division of Neurovirology and Neurodegenerative Disorders, St. Boniface Research CentreUniversity of Manitoba Faculty of MedicineWinnipegCanada
  2. 2.Douglas Hospital Research Centre, Department of PsychiatryMcGill UniversityVerdunCanada

Personalised recommendations