Processing of Ceramic Matrix Composites

  • K. K. Chawla


In this chapter we describe some of the important processing techniques for fabricating ceramic matrix composites. Among the items that one should take into account for choosing reinforcement and matrix materials are:
  • melting point

  • volatility

  • density

  • elastic modulus

  • coefficient of thermal expansion

  • creep characteristics

  • strength

  • fracture toughness

  • compatibility between fiber and matrix
    • chemical compatibility

    • thermal compatibility (should be able to withstand high temperature excursions)

    • compatibility with the environment, internal as well as external. The external compatibility mainly involves oxidation and evaporation characteristics.


Silicon Nitride Ceramic Matrix Ceramic Matrix Composite Electrophoretic Deposition Residual Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barclay, S.J., J.R. Fox, and H.K. Bowen (1987) J. Mater Sci., 22, 4403.CrossRefGoogle Scholar
  2. Bhatt R.T. (1986), National Astronautics and Space Administration, NASA TN-88814.Google Scholar
  3. Bhatt R.T. (1990) J. Mater. Sci., 25, 3401.CrossRefGoogle Scholar
  4. Bickerdike, R.L., A.R.G. Brown, G. Hughes, and H. Ranson (1962) Proc. of the Fifth Conference on Carbon, S. Mrosowski, M.C. Studebaker, and P.L. Walker (eds.), Pergamon Press, Buffalo, NY, p. 575.Google Scholar
  5. Boccaccini, A.R., C. Kaya, and K. K. Chawla (2001) Composites Part A, 32, 997.CrossRefGoogle Scholar
  6. Bordia, R.K.. and R. Raj (1988) J. Am. Ceram. Soc., 71, 302.CrossRefGoogle Scholar
  7. Brown, D.R. and F.W. Salt (1965) J. App. Chem., 15, 40.CrossRefGoogle Scholar
  8. Brennan, J.J. and K.M. Prewo (1982) J. Mater. Sci., 17, 2371.CrossRefGoogle Scholar
  9. Burkland, C.V., W.E. Bustamante, R. Klacka and J.-M Yang (1988) in Whisker- and Fiber-Toughened Ceramics, ASM Intl., Materials Park, Ohio, p. 225.Google Scholar
  10. Burns, G.T. and G. Chandra (1989) J. Am. Ceram. Soc., 72, 334.CrossRefGoogle Scholar
  11. Caputo, A.J., D.P. Stinton and R.A. Lowden.(1987) Am. Ceram. Soc. Bull., 66, 1987, 368.Google Scholar
  12. Carlsson, J.O. (1990) Thin Solid Films, 168, 19.Google Scholar
  13. Chawla, K.K. (1987) Composite Materials, 2nd ed.,Springer-Verlag, New York.CrossRefGoogle Scholar
  14. Chawla N., K.K. Chawla, M. Koopman, B. Patel, C.C. Coffin, and J.I. Eldridge (2001) Comp. Sci. Tech., 61, 1923.CrossRefGoogle Scholar
  15. Chawla, N., Y.K. Tur, J.W. Holmes, J.R. Barber, and A. Szweda(1988) J. Am. Ceram. Soc., 81, 1221.CrossRefGoogle Scholar
  16. Chawla, N. (1997), Metall. & Mater. Trans. A, 28A, 2423.CrossRefGoogle Scholar
  17. Claussen, N., T. Le, and S. Wu (1989) J. Eur. Ceram. Soc., 5, 29.CrossRefGoogle Scholar
  18. Claussen, N., S. Wu, and D. Holtz (1994) J. Eur. Ceram. Soc., 14, 209.CrossRefGoogle Scholar
  19. Cornie, J.A., Y.-M. Chiang, D.R. Uhlmann, A. Mortensen, and J.M. Collins (1986) Am. Ceram. Soc. Bull., 65, 293.Google Scholar
  20. De Jonghe, L.C., M.N. Rahaman, C.H. Hseuh (1986) Acta Met., 39, 1467.CrossRefGoogle Scholar
  21. Erny, T., M. Seibold, O. Jarchow, and P. Greil (1993) J. Am. Ceram. Soc. 76, 207.CrossRefGoogle Scholar
  22. Fitzer, E. and D. Hegen (1979) Angew. Chem., 91, 316.CrossRefGoogle Scholar
  23. Fitzer, E. and J. Schlichting (1980) Z. Werkstoffteck., 11, 330.CrossRefGoogle Scholar
  24. Fitzer, E. and R. Gadow (1986) Am. Ceram. Soc. Bull., 65, 326.Google Scholar
  25. Forrest, C.W., P. Kennedy, and J.V. Shennan (1972) Special Ceramics, British Ceramic Research Association, Stoke-on-Trent, U.K., vol. 5, p.99.Google Scholar
  26. French, J.E. (1996) in Handbook of Continuous Fiber Ceramic Composites, American Ceramic Society, Westerville, OH,), p. 269.Google Scholar
  27. Gokoglu, S.A.(1992) Mater. Res. Soc. Symp. Proc. vol. 250, p. 17.CrossRefGoogle Scholar
  28. Gonon, M.F., G. Fantozzi, M. Murat, and J.P. Disson (1995) J. Eur. Ceram. Soc. 15, 185.CrossRefGoogle Scholar
  29. Greil, P. (1995) J. Am. Ceram. Soc., 78, 835.CrossRefGoogle Scholar
  30. Homeny, J., W.L. Vaughn, and M.K. Ferber (1987) Amer. Cer. Soc. Bull., 67, 333.Google Scholar
  31. Hurwitz, F.I., J.Z. Gyekenyesi, and P.J. Conroy (1989) Ceram. Eng. Sci. Proc., 10,750.CrossRefGoogle Scholar
  32. Hurwitz, F.J. (1992) NASA Tech. Memo, 105754.Google Scholar
  33. Illston, T.J, C.B. Ponton, P.M. Marquis, E.G. Butler (1993) Third Euroceramies, vol. 1, P. Duran and J.F. Fernandez (eds.), Faenza Editirice Iberica, Madrid, pp. 419–424.Google Scholar
  34. Kaya, C., A.R. Boccaccini., and K.K. Chawla (2000) J. Am. Ceram Soc., 20, 1189.Google Scholar
  35. Kristofferson, A., A. Warren, J. Brandt, and R. Lundberg (1993) in Proc. Int. Conf. HTCMC-1, (ed. R. Naslain et al.),Woodhead Pub., Cambridge, UK,., p. 151.Google Scholar
  36. Lipowitz, J., J.A. Rabe, L.K. Frevel, and R.L Miller (1990) J. Mater. Sci., 25, 2118.CrossRefGoogle Scholar
  37. Liu, H.Y., N. Claussen, M.J. Hoffmann, and G. Petzow (1991) J. Eur.Ceram. Soc. 7, 41.CrossRefGoogle Scholar
  38. Lowden, R.A., D.P. Stinton, and T.M. Besmann (1993) in Handbook of Continuous Fiber Ceramic Matrix Composites, Amer. Ceram. Soc., Westerrville, O H, p. 205.Google Scholar
  39. Lundberg, R., R. Pompe, and R. Carlsson (1990) Comp. Sci. Tech. 37, 165.CrossRefGoogle Scholar
  40. Naslain, R. et al. (1983) Euro-CVD-Four, The Centre, Eindhoven, p. 293.Google Scholar
  41. Naslain, R. (1992) in Ceramic Matrix Composites, R. Warren, ed., Chapman and Hall, London, p. 199.Google Scholar
  42. Phillips, D.C. (1983) in Fabrication of Composites, North-Holland, Amsterdam, p. 373.Google Scholar
  43. Prewo, K.M.(1982) J. Mater. Sci., 17, 3549.CrossRefGoogle Scholar
  44. Prewo, K.M.(1986) in Tailoring Multiphase and Composite Ceramics, Materials Science Research, Plenum Press, New York, vol. 20, p. 529.CrossRefGoogle Scholar
  45. Prewo, K.M. and J.J. Brennan (1980) J. Mater. Sci., 15, 463.CrossRefGoogle Scholar
  46. Prewo K.M., J.J. Brennan, and G.K. Layden (1986) Am. Ceram. Soc. Bull., 65, 305.Google Scholar
  47. Rahaman, M.N. and L.C. De Jonghe (1987) J. Am. Ceram. Soc., 70, C-348.CrossRefGoogle Scholar
  48. Raj, R. and R.K Bordia (1989) Acta Met., 32, 1003.CrossRefGoogle Scholar
  49. Riedel, R., G. Passing, H. Schonfelder, and R.J. Brook (1992) Nature, 355, 355.CrossRefGoogle Scholar
  50. Sacks, M.D., H.W. Lee, and O.E. Rojas (1987) J. Am. Ceram. Soc.,70, C-348.CrossRefGoogle Scholar
  51. Sambell, R.A.J., D.C. Phillips, and D.H. Bowen (1974) in Carbon Fibres: Their Place in Modern Technology, The Plastics Institute, London, p. 16/9.Google Scholar
  52. Sato, K., H. Morozumi, A. Tezuka, O. Funayama, and T. Isoda (1995), in High Temperature Ceramic-Matrix Composites II, American Ceramic Society, Westerville, OH, p. 199.Google Scholar
  53. Shalek, P.D., J.J. Petrovic, G.F. Hurley, F.D. Gac (1986) Am. Ceram. Soc. Bull., 65, 351.Google Scholar
  54. Sirieix, F., P. Goursat, A. Lecomte, and A. Dauger (1990) Comp. Sci. Tech., 37, 7.CrossRefGoogle Scholar
  55. Stinton, D.P., A.J. Caputo, and R.A. Lowden (1986) Am. Ceram. Soc. Bull., 65, 347.Google Scholar
  56. Stinton, D.P., A.J. Caputo, R.A. Lowden, and T.M. Besmann (1986) Ceram. Eng. Sci. Proc., 7, 983.CrossRefGoogle Scholar
  57. Urquhart, A.W. (1991) Mater. Sci. Eng., A144, 75.Google Scholar
  58. Wu, S. and N. Claussen (1994) J. Amer. Ceram. Soc., 77, 2898.CrossRefGoogle Scholar
  59. Yang, M. and R. Stevens (1990) J. Mater. Sci., 25, 4658.CrossRefGoogle Scholar

Suggested Reading

  1. Krenkel, W., R. Naslain, and H. Schneider (eds.) (2001) High Temperature Ceramic Matrix Composites, Wiley-VCH, Weinheim, Germany.Google Scholar
  2. Kroke, E., Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel (2000) Silazane derived ceramics and related materials, Mater. Sci. Eng., R26, 97.Google Scholar
  3. Narula, C.K. (1995) Ceramic Precursor Technology and its Applications, Marcel Dekker, New York.Google Scholar
  4. National Materials Advisory Board (1991) High Temperature Metal and Ceramic Matrix Composites for Oxidizing Atmosphere Applications, NMAB-376, Washington, DC.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • K. K. Chawla
    • 1
  1. 1.University of Alabama at BirminghamBirminghamUSA

Personalised recommendations