Skip to main content

Ceramic Reinforcements

  • Chapter
  • 638 Accesses

Abstract

Ceramic reinforcements can be produced in the form of continuous fiber, short fiber, whisker, or particle. Continuous ceramic fibers are very attractive for reinforcing ceramic materials. They combine rather high strength and elastic modulus with high temperature capability and a general freedom from environmental attack, making them attractive as reinforcements in high temperature structural materials. Continuous fibers are, however, more expensive than particulate reinforcements. It is convenient to divide the ceramic reinforcements into oxide and nonoxide categories. Table 3.1 lists some important ceramic reinforcement materials available in different forms.

Keywords

  • Carbon Fiber
  • Polymeric Precursor
  • Rice Hull
  • Ceramic Fiber
  • Ceramic Reinforcement

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-1029-1_3
  • Chapter length: 59 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-1029-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Bennett, S.C. and D. J. Johnson (1978) in 5th Int. Carbon and Graphite Conf., Soc. Chem. Ind., London, p. 377.Bennett, S.C. and D. J. Johnson (1979) Carbon, 17, 25.

    Google Scholar 

  • Bennett, S.C, D.J. Johnson, and W. Johnson (1983) J. Mater. Sci., 18, 3337.

    CrossRef  CAS  Google Scholar 

  • Birchall, J.D., J.A.A. Bradbury, and J. Dinwoodie (1985) in Strong Fibres, Handbook of Composites, vol. 1, North-Holland, Amsterdam, p. 115.

    Google Scholar 

  • Chawla, K.K. (1998) Fibrous Materials, Cambridge University Press, Cambridge.

    CrossRef  Google Scholar 

  • DeBolt, H.E., V. J. Krukonis, and F. E. Wawner (1974) in Silicon Carbide 1973, Univ. of S. Carolina Press, Columbia, SC, p. 168.

    Google Scholar 

  • Deurbergue, A. and A. Oberlin, (1991) Carbon, 29, 691.

    CrossRef  Google Scholar 

  • Dhingra, A.K. (1980) Phil. Trans. Roy. Soc., London, A294, 411.

    Google Scholar 

  • DiCarlo, J.A. (June 1985) J. of Metals, 37, 44.

    CAS  Google Scholar 

  • Diefendorf, R.J. and E. Tokarsky (1975) Polymer Eng. & Sci., 15, 150.

    CrossRef  CAS  Google Scholar 

  • Dresher, W.H. (April 1969) Journal of Metals, 21, 17.

    Google Scholar 

  • Ezekiel, H.N. and R. G. Spain (1967) J. Polymer Sci. C., 19, 271.

    Google Scholar 

  • Fourdeux, A., R. Perret, and W. Ruland (1971) in Carbon Fibres: Their Composites and Applications, The Plastics Inst., London, p.57.

    Google Scholar 

  • Gasson, D.G. and B. Cockayne (1970) J. Mater. Sci., 5, 100.

    CrossRef  CAS  Google Scholar 

  • Gouadec, G. and P. Colomban (2001) J. Euro. Ceram. Soc., 21, 1249.

    CrossRef  CAS  Google Scholar 

  • Haggerty, J.S. (May 1972) NASA-CR-120948.

    Google Scholar 

  • Hurley, G.F. and J.T.A. Pollack (1972) Met. Trans., 7, 397.

    Google Scholar 

  • Inal, O.T., N. Leca, and L. Keller (1980) Phys. Stat. Sol., 62, 681.

    CrossRef  CAS  Google Scholar 

  • Johnson, D.J. and C. N. Tyson (1969) Brit. J. App. Phys., 2, 787.

    Google Scholar 

  • Kelly, B.T. (1981) Physics of Graphite, App. Sci. Pub., London.

    Google Scholar 

  • Kumagai, M. and G.L. Messing (1985) J. Am. Ceram. Soc., 68, 500.

    CrossRef  CAS  Google Scholar 

  • Kerr, M., J.J. Williams, N. Chawla, and K.K. Chawla (2002) in Proc. of MRS symposium, vol 702, Mater. Res. Soc., Warrendale, PA, p. 223.

    Google Scholar 

  • LaBelle, H.E. and A.I. Mlavsky (1967) Nature, 216, 574.

    CrossRef  CAS  Google Scholar 

  • LaBelle, H.E. (1971) Mater. Res. Bull., 6, 581.

    CrossRef  CAS  Google Scholar 

  • Laffon C., A.M. Flank, P. Lagarde et al. (1989) J. Mater. Science, 24, 1503.

    CrossRef  CAS  Google Scholar 

  • Lee, J.-G. and I.B. Cutler (1975) Am. Ceram. Soc. Bull., 54, 195.

    CAS  Google Scholar 

  • Lara-Curzio, E. and S. Sternstein (1993) Composites Sci. & Tech., 46, 265.

    CrossRef  CAS  Google Scholar 

  • Lindemanis, A. (1983) in Emergent Process Methods for High Technology Ceramics, Plenum Press, New York.

    Google Scholar 

  • Lipowitz, J., J.A. Rabe, and L.K. Frevel (1990) J. Mater. Sci., 25, 2118.

    CrossRef  CAS  Google Scholar 

  • Mah, T., N.L. Hecht, D.E. McCullum, J.R. Hoenigman, H.M. Kim, A.P. Katz, and H. A. Lipsitt (1984)J. Mater. Sci., 19, 1191.

    CrossRef  CAS  Google Scholar 

  • Mann, A.B., M. Balooch, J.H. Kinney, and T.P. Weihs (1999)J. Amer. Ceram. Soc., 82, 111.

    CrossRef  CAS  Google Scholar 

  • Milewski, J.V., F.D. Gac, J.J. Petrovic, and S.R. Skaggs (1985)J. Mater. Science, 20, 1160.

    CrossRef  CAS  Google Scholar 

  • Milewski, J.V. J. L. Sandstrom, and W. S. Brown (1974) in Silicon Carbide-1973, University of S. Carolina Press, Columbia, SC, p. 634.

    Google Scholar 

  • Nourbakhsh, S., F.L. Liang, and H. Margolin (1989) J. Materials Sci. Letters, 8, 1252.

    CrossRef  CAS  Google Scholar 

  • Okamura, K. and T. Seguchi (1992) J. Inorganic and Organometallic Polymers, 2, 171.

    CrossRef  CAS  Google Scholar 

  • Perret, R. and W. Ruland (1970) J. App. Cryst., 3, 525.

    CrossRef  CAS  Google Scholar 

  • Petrovic, J.J., J.V. Milewski. D.L. Rohr, and F.D. Gac (1985) J. Mater. Sci., 20, 1167.

    CrossRef  Google Scholar 

  • Pollack, J.T.A. (1972) J. Mater. Sci., 7, 787.

    CrossRef  Google Scholar 

  • Pysher, D.J., K.C. Goretta, R.S. Hodder, Jr., and R.H. Tressler (1989) J. Amer. Ceram. Soc., 72, 284.

    CrossRef  CAS  Google Scholar 

  • Reynolds, W.N. and J.V. Sharp (1974) Carbon, 12, 103.

    CrossRef  CAS  Google Scholar 

  • Riggs, J.P. (1985) in Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2, John Wiley & Sons, New York, p. 640.

    Google Scholar 

  • Romine, J.C. (1987) Cer. Eng. Sci. Proc., 8, 755.

    CrossRef  CAS  Google Scholar 

  • Rosen, B.W. (1965) in Fiber Composite Materials, ASM, Metals Park, OH, 58.

    Google Scholar 

  • Sayir, A. and S.C. Farmer (1995) in Ceramic Matrix Composites, MRS proceedings, vol. 365, Maer. Res. Soc., Pittsburgh, p. 11.

    Google Scholar 

  • Sayir, A., S.C. Farmer, P.O. Dickerson, and H.M. Yun (1995) in Ceramic Matrix Composites, MRS proceedings, vol. 365, Maer. Res. Soc., Pittsburgh, p. 21.

    Google Scholar 

  • Schadler, L. and C. Galiotis (1995) Intl. Mater. Rev., 40, 116.

    CrossRef  CAS  Google Scholar 

  • Simon, G. and A. R. Bunsell (1984) J. Mater. Sci., 19, 3649.

    CrossRef  CAS  Google Scholar 

  • Singer, L. (1979) in Ultra-High Modulus Polymers, Applied Sci. Pub., Essex, England, p. 251.

    Google Scholar 

  • Singer, L. (1981) Fuel, 60, 839–841.

    CrossRef  CAS  Google Scholar 

  • Sowman, H.G. (1988) in Sol-Gel Technology, Noyes Pub., Park Ridge, NJ, p. 162.

    Google Scholar 

  • Suwa, Y., R. Roy, and S. Komarneni (1985) J. Am. Ceram. Soc.,68, C-238.

    CrossRef  Google Scholar 

  • Towata, A., H.J. Hwang, M. Yasuoka, M. Sando, and K. Niihara (2001) Composites A, 32A, 1127.

    CrossRef  CAS  Google Scholar 

  • Wagner, H.D. (1989) in Application of Fracture Mechanics to Composite Materials, Elsevier, Amsterdam, p. 39.

    CrossRef  Google Scholar 

  • Watt, W. (1970) Proc. Roy. Soc., A319, 5.

    Google Scholar 

  • Watt, W. and W. Johnson (1969) App. Polymer Symposium, 9, 215.

    Google Scholar 

  • Wax, S.G. (1985) Amer. Cer. Soc. Bull., 64 (185) 1096.

    Google Scholar 

  • Weber, J. K. R, J. J. Felten, B. Cho, and P. C. Nordine (1998) Nature, 393, 769.

    CrossRef  CAS  Google Scholar 

  • Wilson, D.M. and L.R. Visser (2001) Composites A, 32A, 1143.

    CrossRef  CAS  Google Scholar 

  • Yajima, S., K. Okamura, J. Hayashi, and M. Omori (1976) J. Amer. Ceram. Soc., 59, 324.

    CrossRef  CAS  Google Scholar 

  • Yajima, S. (1980) Phil. Trans., R. Soc., London, A294, 419.

    Google Scholar 

  • Yamamura, T., T. Ishirkawa, M. Shibuya, T. Hiasyuki, and K. Okamura (1988).J. Mater. Sci., 23, 2589.

    CrossRef  CAS  Google Scholar 

  • Young, R.J. and R.J. Day (1989) Brit. Polymer J., 21, 17.

    CrossRef  CAS  Google Scholar 

Suggested Reading

  • Bunsell, A.R. (ed.) (1988) Fibre Reinforcements for Composite Materials, Elsevier Amsterdam.

    Google Scholar 

  • Chawla, K.K. (1998) Fibrous Materials, Cambridge University Press, Cambridge.

    CrossRef  Google Scholar 

  • Elices, M and J. LLorca (eds.) (2002) Fracture in Fibers, Elsevier, Oxford.

    Google Scholar 

  • Peebles, L.H. (1995) Carbon Fibers, CRC Press, Boca Raton, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (2003). Ceramic Reinforcements. In: Ceramic Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1029-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1029-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7262-8

  • Online ISBN: 978-1-4615-1029-1

  • eBook Packages: Springer Book Archive