Skip to main content

The Role of Paraoxonase in Lipid Metabolism

  • Chapter

Abstract

High-density lipoprotein (HDL) has been known for many years to protect against the development of coronary heart disease, although the exact mechanism is unclear. Great attention has been focused on the central role of HDL in reverse cholesterol transport. Recently, however, the role of HDL in preventing the oxidation of low-density lipoprotein (LDL) has received much attention. The oxidation of LDL is central to current theories on the initiation and progression of atherosclerosis. HDL can retard the oxidation of LDL. Central to this action of HDL is PON1 (paraoxonase) which hydrolyzes oxidized-phospholipids and cholesteryl-esters on LDL, HDL and in atherosclerotic plaques, thus retarding oxidation and attenuating the inflammatory process of atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins S., Gan KN, Mody M, La Du BN (1993) Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: Glutamine or Arginine at position 191, for the respective A or B allozymes. Am J Hum Genet 52: 598–608

    CAS  Google Scholar 

  • Arrol S, Mackness MI, Durrington PN (1996) High-density lipoprotein associated enzymes and the prevention of low-density lipoprotein oxidation. Eur J Lab Med 4: 33–38

    CAS  Google Scholar 

  • Assmann G, Schulte H, von Eckardstein A, Huang Y (1996) High density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 124: S11–S20

    Article  CAS  Google Scholar 

  • Aviram M, Billecke S, Sorenson R, Bisgaier C, Newton R, Rosenblat M, et al. (1998a) Paraoxonase active site required for protection against LDL oxidation involves its free sulphydryl group and is different from that required for its arylesterase/paraoxonase activities: selective active of human paraoxonase alloenzymes Q and R. Arterioscl Thromb Vasc Biol 10: 1617–1624

    Article  Google Scholar 

  • Aviram M, Hardak E, Vaya J, Mahmood S, Milo S, Hoffmann A et al. (2000) Human serum paraoxonase (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions. Circulation 101: 2510–2517

    Article  CAS  Google Scholar 

  • Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998b) Paraoxonase inhibits high-density lipoprotein and preserves its functions. J Clin Invest 101: 1581–1590

    Article  CAS  Google Scholar 

  • Ayub A, Mackness MI, Arrol S, Mackness B, Patel J, Durrington PN (1999) Serum paraoxonase after myocardial infarction. Arterioscl Thromb Vasc Biol 19: 330–335

    Article  CAS  Google Scholar 

  • Badimon JJ, Badimon L, Fuster V (1990) Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 85: 1234–1241

    Article  CAS  Google Scholar 

  • Benoit P, Emmanuel F, Caillund JM, Bassinet L, Castro G, Gallix P, et al. (1999) Somatic gene transfer of human apo Al inhibits atherosclerosis progression in mouse models. Circulation 99: 105–110

    Article  CAS  Google Scholar 

  • Bianco-Molina A, Martin-Escalaute D, Bravo D, Gonzáez-Reyes JA, López-Miranda J, Ordovás JM et al. (2000) High-density lipoproteins protect endothelical from apoptosis induced by oxidized low-density lipoproteins. Protoplasma 211: 198–206

    Article  Google Scholar 

  • Blatter Garin M-C, Abbott C, Messmer S, Mackness MI, Durrington PN, Pometta D, James RW (1994) Quantification of human serum paraoxonase by enzyme-linked immunoassay: population differences in protein concentrations. Biochem J 304: 549–554

    Google Scholar 

  • Blatter-Garin M-C, James RW, Dussoix P, Blanché H, Passa P, Froguel P, et al. (1997) Paraoxonase polymorphism Met-Leu 54 is associated with modified serum concentrations of the enzyme. J Clin Invest 99: 62–66

    Article  Google Scholar 

  • Castelli WP, Garrison RJ, Wilson PW, Abbot RD, Kalousdiou S, Kammel WB (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 256: 2835–2838

    Article  CAS  Google Scholar 

  • Chisholm GM, Penn MS (1996) Oxidized lipoproteins and atherosclerosis. In: Fuster V. Ross R, Topol EJ. (eds) Atherosclerosis and coronary artery disease. Lippincott-Raven, Philadelphia, pp 129–149

    Google Scholar 

  • Consensus Statement. (1992) Triglyceride, high-density lipoprotein and coronary heart disease. 10: 1–28

    Google Scholar 

  • Dansky HM, Charlton SA, Barlow CB, Tamminen M, Smith JD, Frank JS, et al. (1999) Apo AI inhibits foam cell formation in apo E-deficient mice after monocyte adherence to the endothelium. J Clin Invest 104: 31–39

    Article  CAS  Google Scholar 

  • Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nature Genetics 14: 334–336

    Article  CAS  Google Scholar 

  • DiCorleto PE, Gimbrone MA jr. (1996) Vascular Endothelium. In: Fuster V, Ross R, Topol EJ (eds.) Atherosclerosis and coronary artery disease. Lippincott-Raven, Philadelphia, pp 387–399

    Google Scholar 

  • Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) CD36 is a receptor for oxidized low density lipoprotein. J.Biol Chem 268: 11811–11816

    CAS  Google Scholar 

  • Jakubowski H (2000) Calcium-dependent human serum homocysteine thiolactone hydrolase. J Biol Chem 275: 3957–3962

    Article  CAS  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Kreiger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343: 531–533

    Article  CAS  Google Scholar 

  • Leviev I, James RW (2000) Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler Thromb Vasc Biol 20: 516–521

    Article  CAS  Google Scholar 

  • Mackness B, Durrington PN, Mackness MI (1998) Lack of protection against oxidative modification of LDL by avian HDL. Biochem Biophys Res Commun 247: 443–446

    Article  CAS  Google Scholar 

  • Mackness B, Durrington PN, Mackness MI (1999) Polymorphisms of paraoxonase genes and low-density lipoprotein lipid peroxidation. Lancet 353: 468–469

    Article  CAS  Google Scholar 

  • Mackness B, Hunt R, Durrington PN, Mackness MI (1997) Increased immunolocalisation of paraoxonase, clusterin and apolipoprotein AI in the human artery wall with progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17: 1233–1238

    Article  CAS  Google Scholar 

  • Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1997) Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. Br J Pharmacol 112: 265–268

    Article  Google Scholar 

  • Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Letts 423: 57–60

    Article  CAS  Google Scholar 

  • Mackness B, Mackness MI, Durrington PN, Arrol S, Evans AE, McMaster D, et al. (2000) Paraoxonase activity in two healthy populations with differing rates of coronary heart disease. Eur J Clin Invest 30: 4–10

    Article  CAS  Google Scholar 

  • Mackness MI (1989) Possible Medical Significance of Human Serum Paraoxonase. In: Reinger E, Aldridge WN, Hoskin FCG. (eds) Enzymes Hydrolysing Organophosporus Compounds. Ellis-Horwood, Chichester, pp 202–213

    Google Scholar 

  • Mackness MI, Abbott CA, Arrol S, Durrington PN (1993a) The role of high density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. Biochem J 294: 829–835

    CAS  Google Scholar 

  • Mackness MI, Arrol S, Abbott CA, Durrington PN (1993 b) Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 104: 129–135

    Article  CAS  Google Scholar 

  • Mackness MI, Arrol S, Durrington PN (1991) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Letts 286: 152–154

    Article  CAS  Google Scholar 

  • Mackness MI, Durrington PN, Mackness B (2000) How HDL Protects against the effects of LDL lipid-peroxidation. Curr Opin Lipidol 11: 383–388

    Article  CAS  Google Scholar 

  • Mackness MI, Durrington PN (1995) High density lipoprotein, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis 115: 243–253

    Article  CAS  Google Scholar 

  • Mackness MI, Mackness B, Durrington PN, Fogelman AM, Berliner J, Lusis AJ, et al. (1998) Paraoxonase and coronary heart disease. Curr Opin Lipidol 9: 319–324

    Article  CAS  Google Scholar 

  • Mackness MI, Sangvanich P, Mackness B, Durrington PN, Gaskill S (2000) HDL prevents the formation of aldehyde adducts of apo B during the oxidation of LDL. Atherosclerosis 151: 260

    Article  Google Scholar 

  • Macphee C, Moores KE, Boyd HF, Dhanak D, Ife RJ, Leach CA, et al. (1999) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 338: 479–487

    Article  CAS  Google Scholar 

  • Marathe GK, Davies SS, Harrison KA, Silva AR, Murphy RC, Castro-Faria-Neto H. et al. (1999) Inflammatory platelet activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines. J Biol Chem 274: 28395–28404

    Article  CAS  Google Scholar 

  • McElveen J, Mackness MI, Colley CM, Peard T, Warner S, Walker CH (1986) Distribution of paraoxon hydrolysing activity in the serum of patients after myocardial infarction. Clin Chem 32: 671–673

    CAS  Google Scholar 

  • Mclntyre TM, Zimmerman GA, Prescott SM (1999) Biologically active oxidized phospholipids. J Biol Chem 274: 25189–25192

    Article  Google Scholar 

  • Mentlein R, Berge RK, Heymann E (1985) Identity of purified monoacylglycerol lipase, palmitoyl-CoA hydrolase and aspirin-metabolising carboxylesterase from rat liver microsomal fractions. Biochem 232: 479–483

    CAS  Google Scholar 

  • Miller GJ, Miller NE (1975) Plasma high-density lipoprotein concentration and the development of ischaemic heart disease. Lancet 1: 16–19

    Article  CAS  Google Scholar 

  • Parthasarathy S, Santanam N, Ramachandran S, Meilhac O (1999) Oxidants and antioxidants in atherogenesis: an appraisal. J Lipid Res 40: 21143–22157

    Google Scholar 

  • Rice-Evans C, Bruckdorfer KR (1992) Free radicals, lipoproteins and cardiovascular dysfunction. Molec Aspects Med 13: 1–111

    Article  CAS  Google Scholar 

  • Richter RJ, Furlong CE (1999) Determination of paraoxonase (PON1) status requires more than genotyping. Pharmacogenetics 9: 745–753

    Article  CAS  Google Scholar 

  • Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343: 570–572

    Article  CAS  Google Scholar 

  • Rosenfeld ME, Ylä-Herttuala S, Lipton BA, Ord VA, Witztum JL, Steinberg D (1992) Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol 140: 291–300

    CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis-an update. N Engl J Med 314: 488–500

    Article  CAS  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990-2019;s. Nature 362: 801–809

    Article  CAS  Google Scholar 

  • Salonen JT, Malin R, Toumaineu T-P Nyyssönen K, Lakka TA, Lehtimäki T (1999) Polymorphism in high density lipoprotein gene and risk of acute myocardial infarction in men: prospective nested case-control study. BMJ 319: 487–488

    Article  CAS  Google Scholar 

  • Schmidt K, Klatt P, Graier WF, Kostner GM, Kukovetz WR (1992) High density lipoprotein antagonizes the inhibitory effects of oxidized low density lipoprotein and lysolecithin on soluble gyanylyl cyclase. Biochem Biophys Res Commun 182: 302–308

    Article  CAS  Google Scholar 

  • Shih DM, Gu L, Xia Y-R, Navab M, Li W-F, Hama S, et al. (1998) Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394: 284–287

    Article  CAS  Google Scholar 

  • Simionescu N, Simionescu M (1991) Cellular interactions of lipoproteins with vascular endothelium: endocytosis and transcytosis. In: Shaw JM (ed). Lipoproteins as carriers of pharmacological agents. Dekker, New York, pp 45–95

    Google Scholar 

  • Stanton LW, White RT, Bryant CM, Protter AA, Endemann G (1992) The macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein. J Biol Chem 267: 22446–22451

    CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol modifications of low-density lipoprotein that increase its atherogenicity. New Engl J Med 320: 915–924

    Article  CAS  Google Scholar 

  • Steinbrecher UP, Lougheed M, Kwan W-C, Dirks, M (1989) Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products fatty acid peroxidation. J Biol Chem 264: 15216–15223

    CAS  Google Scholar 

  • Subbanagounder G, Leitinger N, Shih PT, Faull KF, Berliner JA (1999) Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis. Circ Res 85: 311–318

    Article  CAS  Google Scholar 

  • Tangirala RK, Tsukamoto K, Chun SH, Usher D, Puré E, Radar DJ (1999) Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein AI in mice. Circulation 100: 1816–1822

    Article  CAS  Google Scholar 

  • Tanne D, Yaari S, Goldbourt U (1997) High-density lipoprotein cholesterol and risk of ischemic stroke mortality. A 21 year follow-up of 8586 men from the Israeli Ischaemic Heart Disease Study. Stroke 21: 83–87

    Article  Google Scholar 

  • Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ (2000) High-density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 275: 11278–11283

    Article  CAS  Google Scholar 

  • Watson AD, Berliner JA, Hama SY, La Du BN, Fault KF, Fogelman AM, et al. (1995) Protective effect of high density lipoprotein associated paraoxonase-inhibition of the biological activity of minimally oxidized low-density lipoprotein. J Clin Invest 96: 2882–2891

    Article  CAS  Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88: 1785–1792

    Article  CAS  Google Scholar 

  • Ylä-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL (1994) Rabbit and human atherosclerotic lesion contain IgG that recognizes epitopes of oxidized LDL. Arterioscl Thromb 14: 32–40

    Article  Google Scholar 

  • Zwijsen RML, De Haan LHJ, Kuivenhoven JA, Nusselder ICJ (1991) Modulation of low-density lipoprotein induced inhibition of intracellular communications by antioxidants and high density lipoproteins. Food Chem Toxicol 29: 615–620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mackness, M.I., Durrington, P.N., Mackness, B. (2002). The Role of Paraoxonase in Lipid Metabolism. In: Costa, L.G., Furlong, C.E. (eds) Paraoxonase (PON1) in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1027-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1027-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5358-4

  • Online ISBN: 978-1-4615-1027-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics