Skip to main content

Scale Effects and the Molecular Origins of Tribological Behavior

  • Chapter
Nanotribology
  • 355 Accesses

Abstract

There has been a great deal of progress in probing the molecular origins of friction in recent years. New experimental tools such as the surface force apparatus,13 quartz microbalance,4 scanning probe microscopy,56 and other methods,79 allow measurements with controlled chemistry and, in some cases, geometry. At the same time, tremendous increases in computer power have allowed increasingly sophisticated models of these ideal systems.1011

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, J. Chem. Phys. 93, 1895 (1990).

    Article  ADS  Google Scholar 

  2. A. L. Demirel and S. Granick, Phys. Rev. Lett. 77, 2261 (1996).

    Article  ADS  Google Scholar 

  3. H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

    Article  ADS  Google Scholar 

  4. J. Krim, E. T. Watts, and J. Digel, J. Vac. Sci. Technol. A 8, 3417 (1990)

    ADS  Google Scholar 

  5. J. Krim, D. H. Solina, and R. Chiarello, Phys. Rev. Lett. 66, 181 (1991).

    Article  ADS  Google Scholar 

  6. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).

    Article  ADS  Google Scholar 

  7. R. W. Carpick and M. Salmeron, Chem. Rev. 97, 1163 (1997).

    Article  Google Scholar 

  8. P. Berthoud and T. Baumberger, Proc. R. Soc. Lond A 454, 1615 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. J. Gellman, J. Vac. Sci. Technol. A 10, 180 (1992)

    ADS  Google Scholar 

  10. C. F. McFadden and A. J. Gellman, Surf. Sci. 391, 287 (1997).

    Article  ADS  Google Scholar 

  11. J. H. Dieterich and B. D. Kilgore, Tectonophysics 256, 219 (1996).

    Article  ADS  Google Scholar 

  12. M. O. Robbins and M. H. Müser, in Modern Tribology Handbook, edited by B. Bhushan (CRC Press, Boca Raton, 2001) pp. 717–765 and cond-mat/0001056.

    Google Scholar 

  13. J. A. Harrison, S. J. Stuart, and D. W. Brenner, in Handbook of Micro/Nanotribology, edited by B. Bhushan (CRC Press, Boca Raton, 1999), pp. 525–594.

    Google Scholar 

  14. M. Cieplak, E. D. Smith, and M. O. Robbins, Science 265, 1209 (1994)

    Article  ADS  Google Scholar 

  15. E. D. Smith, M. Cieplak, and M. O. Robbins, Phys. Rev. B. 54, 8252 (1996).

    Article  ADS  Google Scholar 

  16. J. Klein and E. Kumacheva, Science 269, 816 (1995).

    Article  ADS  Google Scholar 

  17. P. A. Thompson, G. S. Grest, and M. O. Robbins, Phys. Rev. Lett. 68, 3448 (1992)

    Article  ADS  Google Scholar 

  18. P. A. Thompson, M. O. Robbins, and G. S. Grest, Israel J. of Chem. 35, 93 (1995).

    Google Scholar 

  19. M. O. Robbins and A. R. C. Baljon, in Microstructure and Microtribology of Polymer Surfaces, edited by V. V. Tsukruk and K. J. Wahl (American Chemical Society, Washington DC, 2000), pp. 91–117.

    Google Scholar 

  20. M. Hirano and K. Shinjo, Phys. Rev. B 41, 11837 (1990)

    ADS  Google Scholar 

  21. K. Shinjo and M. Hirano, Surface Science 283, 473 (1993).

    Article  ADS  Google Scholar 

  22. G. He, M. H. Müser, and M. O. Robbins, Science 284, 1650 (1999)

    Article  ADS  Google Scholar 

  23. G. He and M. O. Robbins, Phys. Rev. B64, 035413 (2001).

    ADS  Google Scholar 

  24. M. H. Müser and M. O. Robbins, Phys. Rev. B 64, 2335 (2000).

    Article  Google Scholar 

  25. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    MATH  Google Scholar 

  26. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  ADS  Google Scholar 

  27. W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, and O. Hahn, Acta Polym. 49, 61 (1998); 75 (1998).

    Article  Google Scholar 

  28. M. J. Stevens and M. O. Robbins, Phys. Rev. E 48, 3778 (1993).

    Article  ADS  Google Scholar 

  29. E. Manias, G. Hadziioannou, and G. T. Brinke, J. Chem. Phys. 101, 1721 (1994).

    Article  ADS  Google Scholar 

  30. R. Khare, J. J. de Pablo, and A. Yethiraj, Macromolecules 29, 7910 (1996).

    Article  ADS  Google Scholar 

  31. U. Landman, W. D. Luedtke, and J. Gao, Langmuir 12, 4514 (1996).

    Article  Google Scholar 

  32. E. D. Reedy, Jr., Engineering Fracture Mech. 36, 575 (1990).

    Article  Google Scholar 

  33. O. Vafek and M. O. Robbins, Phys. Rev. B 60, 12002 (1999).

    Article  ADS  Google Scholar 

  34. J. A. Hurtado and K. S. Kim, Proc. R. Soc. Ser. A. (London) 455, 3363 (1999).

    Article  ADS  MATH  Google Scholar 

  35. P. A. Thompson, W. B. Brinckerhoff, and M. O. Robbins, J. Adhesion Sci. Technol. 7, 535 (1993).

    Article  Google Scholar 

  36. P. A. Thompson and M. O. Robbins, Phys. Rev. Lett. 63, 766 (1989).

    Article  ADS  Google Scholar 

  37. D. Y. C. Chan and R. G. Horn, J. Chem. Phys. 83, 5311 (1985)

    Article  ADS  Google Scholar 

  38. J. N. Israelachvili, J. Colloid Interface Sci. 110, 263 (1986).

    Article  Google Scholar 

  39. P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).

    Article  ADS  Google Scholar 

  40. P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).

    Article  ADS  Google Scholar 

  41. J.-L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).

    Article  ADS  Google Scholar 

  42. P. G. de Gennes, C. R. Acad. Sci. Ser. B 288, 219 (1979).

    Google Scholar 

  43. J. M. Georges, S. Millot, J. L. Loubet, A. Touck and D. Mazuyer, in Thin Films in Tribology, edited by D. Dowson, C. M. Taylor, T. H. C. Childs, M. Godet, and G. Dalmaz (Elsevier, Amsterdam, 1993), pp. 443–452.

    Google Scholar 

  44. J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola, Science 240, 189 (1988).

    Article  ADS  Google Scholar 

  45. E. Manias, I. Bitsanis, G. Hadziioannou, and G. T. Brinke, Europhys. Lett. 33, 371 (1996).

    Article  ADS  Google Scholar 

  46. J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997)

    Article  ADS  Google Scholar 

  47. J. Chem. Phys. 106, 4309 (1997)

    Article  ADS  Google Scholar 

  48. J. Phys. Chem. B 101, 4013 (1997).

    Article  Google Scholar 

  49. I. Bitsanis, S. A. Somers, H. T. Davis, and M. Tirrell, J. Chem. Phys. 93, 3427 (1990)

    Article  ADS  Google Scholar 

  50. I. Bitsanis and C. Pan, J. Chem. Phys. 99, 5520 (1993).

    Article  ADS  Google Scholar 

  51. M. O. Robbins and E. D. Smith, Langmuir 12, 4543 (1996).

    Article  Google Scholar 

  52. F. F. Abraham, J. Chem. Phys. 68, 3713 (1978).

    Article  ADS  Google Scholar 

  53. S. Toxvaerd, J. Chem. Phys. 74, 1998 (1981).

    Article  ADS  Google Scholar 

  54. I. K. Snook and W. van Megen, J. Chem. Phys. 72, 2907 (1980).

    Article  ADS  Google Scholar 

  55. P. A. Thompson and M. O. Robbins, Science 250, 792 (1990).

    Article  ADS  Google Scholar 

  56. U. Landman, W. D. Luedtke, and M. W. Ribarsky, J. Vac. Sci. Technol. A 7, 2829 (1989).

    Article  ADS  Google Scholar 

  57. M. Schoen, C. L. Rhykerd, D. J. Diestler, and J. H. Cushman, J. Chem. Phys. 87, 5464 (1987)

    Article  ADS  Google Scholar 

  58. M. Schoen, J. H. Cushman, D. J. Diestler, and C. L. Rhykerd, J. Chem. Phys. 88, 1394 (1988).

    Article  ADS  Google Scholar 

  59. Note that if one defines the velocity gradient on a finer mesh, there are fluctuations in slope. The concept of a bulk viscosity is meaningless at such small scales.

    Google Scholar 

  60. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd Ed. (Wiley, New York, 1980).

    Google Scholar 

  61. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  62. M. O. Robbins, in Jamming and Rheology: Constrained dynamics on microscopic and macroscopic scales, edited by A. J. Liu and S. R. Nagel (Taylor and Francis, London, 2000) and cond-mat/9912337.

    Google Scholar 

  63. A. R. C. Baljon and M. O. Robbins, Mat. Res. Soc. Bull. 22(1), 22 (1997)

    Google Scholar 

  64. and in Micro/Nanotribology and Its Applications, edited by B. Bhushan (Kluwer, Dordrecht, 1997), pp. 533–553.

    Chapter  Google Scholar 

  65. S. Aubry, in Solitons and Condensed Matter Physics, edited by A. R. Bishop and T. Schneider (Springer-Verlag, Berlin, 1979), pp. 264–290

    Google Scholar 

  66. P. Bak, Rep. Prog. Phys. 45, 587 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  67. B. N. J. Persson, Phys. Rev. B 48, 18140 (1993).

    Article  ADS  Google Scholar 

  68. M. R. Sørensen, K. W. Jacobsen, and P. Stoltze, Phys Rev. B 53, 2101 (1996).

    Article  ADS  Google Scholar 

  69. B. N. J. Persson and E. Tosatti, in Physics of Sliding Friction, edited by B. N. J. Persson and E. Tosatti (Kluwer, Dordrecht, 1996), pp. 179–189.

    Google Scholar 

  70. C. Caroli and P. Nozieres, in Physics of Sliding Friction, edited by B. N. J. Persson and E. Tosatti (Kluwer, Dordrecht, 1996), pp. 27–49.

    Google Scholar 

  71. A. Volmer and T. Natterman, Z. Phys. B 104, 363 (1997).

    Article  ADS  Google Scholar 

  72. M. H. Müser, L. Wenning, and M. O. Robbins, Phys. Rev. Lett. 86, 1295 (2001) and cond-mat/0004494.

    Article  ADS  Google Scholar 

  73. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1986).

    Google Scholar 

  74. J. A. Greenwood and J. B. P. Williamson, Proc. Roy. Soc. A 295, 300 (1966).

    Article  ADS  Google Scholar 

  75. E. Rabinowicz, Friction and Wear of Materials (Wiley, New York, 1965).

    Google Scholar 

  76. D. Dowson, History of Tribology (Longman Inc., New York, 1979).

    Google Scholar 

  77. G. He and M. O. Robbins, Tribo. Lett. 10, 7 (2001) and cond-mat/0008196.

    Article  Google Scholar 

  78. J. H. Dieterich, J. Geophys. Res. 84, 2169 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

He, G., Robbins, M.O. (2003). Scale Effects and the Molecular Origins of Tribological Behavior. In: Hsu, S.M., Ying, Z.C. (eds) Nanotribology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1023-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1023-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5356-0

  • Online ISBN: 978-1-4615-1023-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics