Scale Effects and the Molecular Origins of Tribological Behavior

  • Gang He
  • Mark O. Robbins

Abstract

There has been a great deal of progress in probing the molecular origins of friction in recent years. New experimental tools such as the surface force apparatus,1, 2, 3 quartz microbalance,4 scanning probe microscopy,5, 6 and other methods,7, 8, 9 allow measurements with controlled chemistry and, in some cases, geometry. At the same time, tremendous increases in computer power have allowed increasingly sophisticated models of these ideal systems.10, 11

Keywords

Quartz Hydrocarbon Soliton Macromolecule Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, J. Chem. Phys. 93, 1895 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    A. L. Demirel and S. Granick, Phys. Rev. Lett. 77, 2261 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    J. Krim, E. T. Watts, and J. Digel, J. Vac. Sci. Technol. A 8, 3417 (1990)ADSGoogle Scholar
  5. 4.a
    J. Krim, D. H. Solina, and R. Chiarello, Phys. Rev. Lett. 66, 181 (1991).ADSCrossRefGoogle Scholar
  6. 5.
    C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).ADSCrossRefGoogle Scholar
  7. 6.
    R. W. Carpick and M. Salmeron, Chem. Rev. 97, 1163 (1997).CrossRefGoogle Scholar
  8. 7.
    P. Berthoud and T. Baumberger, Proc. R. Soc. Lond A 454, 1615 (1998).MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    A. J. Gellman, J. Vac. Sci. Technol. A 10, 180 (1992)ADSGoogle Scholar
  10. 8.a
    C. F. McFadden and A. J. Gellman, Surf. Sci. 391, 287 (1997).ADSCrossRefGoogle Scholar
  11. 9.
    J. H. Dieterich and B. D. Kilgore, Tectonophysics 256, 219 (1996).ADSCrossRefGoogle Scholar
  12. 10.
    M. O. Robbins and M. H. Müser, in Modern Tribology Handbook, edited by B. Bhushan (CRC Press, Boca Raton, 2001) pp. 717–765 and cond-mat/0001056.Google Scholar
  13. 11.
    J. A. Harrison, S. J. Stuart, and D. W. Brenner, in Handbook of Micro/Nanotribology, edited by B. Bhushan (CRC Press, Boca Raton, 1999), pp. 525–594.Google Scholar
  14. 12.
    M. Cieplak, E. D. Smith, and M. O. Robbins, Science 265, 1209 (1994)ADSCrossRefGoogle Scholar
  15. 12.a
    E. D. Smith, M. Cieplak, and M. O. Robbins, Phys. Rev. B. 54, 8252 (1996).ADSCrossRefGoogle Scholar
  16. 13.
    J. Klein and E. Kumacheva, Science 269, 816 (1995).ADSCrossRefGoogle Scholar
  17. 14.
    P. A. Thompson, G. S. Grest, and M. O. Robbins, Phys. Rev. Lett. 68, 3448 (1992)ADSCrossRefGoogle Scholar
  18. 14.a
    P. A. Thompson, M. O. Robbins, and G. S. Grest, Israel J. of Chem. 35, 93 (1995).Google Scholar
  19. 15.
    M. O. Robbins and A. R. C. Baljon, in Microstructure and Microtribology of Polymer Surfaces, edited by V. V. Tsukruk and K. J. Wahl (American Chemical Society, Washington DC, 2000), pp. 91–117.Google Scholar
  20. 16.
    M. Hirano and K. Shinjo, Phys. Rev. B 41, 11837 (1990)ADSGoogle Scholar
  21. 16.a
    K. Shinjo and M. Hirano, Surface Science 283, 473 (1993).ADSCrossRefGoogle Scholar
  22. 17.
    G. He, M. H. Müser, and M. O. Robbins, Science 284, 1650 (1999)ADSCrossRefGoogle Scholar
  23. 17.a
    G. He and M. O. Robbins, Phys. Rev. B64, 035413 (2001).ADSGoogle Scholar
  24. 18.
    M. H. Müser and M. O. Robbins, Phys. Rev. B 64, 2335 (2000).CrossRefGoogle Scholar
  25. 19.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).MATHGoogle Scholar
  26. 20.
    K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).ADSCrossRefGoogle Scholar
  27. 21.
    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, and O. Hahn, Acta Polym. 49, 61 (1998); 75 (1998).CrossRefGoogle Scholar
  28. 22.
    M. J. Stevens and M. O. Robbins, Phys. Rev. E 48, 3778 (1993).ADSCrossRefGoogle Scholar
  29. 23.
    E. Manias, G. Hadziioannou, and G. T. Brinke, J. Chem. Phys. 101, 1721 (1994).ADSCrossRefGoogle Scholar
  30. 24.
    R. Khare, J. J. de Pablo, and A. Yethiraj, Macromolecules 29, 7910 (1996).ADSCrossRefGoogle Scholar
  31. 25.
    U. Landman, W. D. Luedtke, and J. Gao, Langmuir 12, 4514 (1996).CrossRefGoogle Scholar
  32. 26.
    E. D. Reedy, Jr., Engineering Fracture Mech. 36, 575 (1990).CrossRefGoogle Scholar
  33. 27.
    O. Vafek and M. O. Robbins, Phys. Rev. B 60, 12002 (1999).ADSCrossRefGoogle Scholar
  34. 28.
    J. A. Hurtado and K. S. Kim, Proc. R. Soc. Ser. A. (London) 455, 3363 (1999).ADSMATHCrossRefGoogle Scholar
  35. 29.
    P. A. Thompson, W. B. Brinckerhoff, and M. O. Robbins, J. Adhesion Sci. Technol. 7, 535 (1993).CrossRefGoogle Scholar
  36. 30.
    P. A. Thompson and M. O. Robbins, Phys. Rev. Lett. 63, 766 (1989).ADSCrossRefGoogle Scholar
  37. 31.
    D. Y. C. Chan and R. G. Horn, J. Chem. Phys. 83, 5311 (1985)ADSCrossRefGoogle Scholar
  38. 31.a
    J. N. Israelachvili, J. Colloid Interface Sci. 110, 263 (1986).CrossRefGoogle Scholar
  39. 32.
    P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).ADSCrossRefGoogle Scholar
  40. 33.
    P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).ADSCrossRefGoogle Scholar
  41. 34.
    J.-L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).ADSCrossRefGoogle Scholar
  42. 35.
    P. G. de Gennes, C. R. Acad. Sci. Ser. B 288, 219 (1979).Google Scholar
  43. 36.
    J. M. Georges, S. Millot, J. L. Loubet, A. Touck and D. Mazuyer, in Thin Films in Tribology, edited by D. Dowson, C. M. Taylor, T. H. C. Childs, M. Godet, and G. Dalmaz (Elsevier, Amsterdam, 1993), pp. 443–452.Google Scholar
  44. 37.
    J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola, Science 240, 189 (1988).ADSCrossRefGoogle Scholar
  45. 38.
    E. Manias, I. Bitsanis, G. Hadziioannou, and G. T. Brinke, Europhys. Lett. 33, 371 (1996).ADSCrossRefGoogle Scholar
  46. 39.
    J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997)ADSCrossRefGoogle Scholar
  47. 39.a
    J. Chem. Phys. 106, 4309 (1997)ADSCrossRefGoogle Scholar
  48. 39.b
    J. Phys. Chem. B 101, 4013 (1997).CrossRefGoogle Scholar
  49. 40.
    I. Bitsanis, S. A. Somers, H. T. Davis, and M. Tirrell, J. Chem. Phys. 93, 3427 (1990)ADSCrossRefGoogle Scholar
  50. 40.a
    I. Bitsanis and C. Pan, J. Chem. Phys. 99, 5520 (1993).ADSCrossRefGoogle Scholar
  51. 41.
    M. O. Robbins and E. D. Smith, Langmuir 12, 4543 (1996).CrossRefGoogle Scholar
  52. 42.
    F. F. Abraham, J. Chem. Phys. 68, 3713 (1978).ADSCrossRefGoogle Scholar
  53. 43.
    S. Toxvaerd, J. Chem. Phys. 74, 1998 (1981).ADSCrossRefGoogle Scholar
  54. 44.
    I. K. Snook and W. van Megen, J. Chem. Phys. 72, 2907 (1980).ADSCrossRefGoogle Scholar
  55. 45.
    P. A. Thompson and M. O. Robbins, Science 250, 792 (1990).ADSCrossRefGoogle Scholar
  56. 46.
    U. Landman, W. D. Luedtke, and M. W. Ribarsky, J. Vac. Sci. Technol. A 7, 2829 (1989).ADSCrossRefGoogle Scholar
  57. 47.
    M. Schoen, C. L. Rhykerd, D. J. Diestler, and J. H. Cushman, J. Chem. Phys. 87, 5464 (1987)ADSCrossRefGoogle Scholar
  58. 47.a
    M. Schoen, J. H. Cushman, D. J. Diestler, and C. L. Rhykerd, J. Chem. Phys. 88, 1394 (1988).ADSCrossRefGoogle Scholar
  59. 48.
    Note that if one defines the velocity gradient on a finer mesh, there are fluctuations in slope. The concept of a bulk viscosity is meaningless at such small scales.Google Scholar
  60. 49.
    J. D. Ferry, Viscoelastic Properties of Polymers, 3rd Ed. (Wiley, New York, 1980).Google Scholar
  61. 50.
    W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).CrossRefGoogle Scholar
  62. 51.
    M. O. Robbins, in Jamming and Rheology: Constrained dynamics on microscopic and macroscopic scales, edited by A. J. Liu and S. R. Nagel (Taylor and Francis, London, 2000) and cond-mat/9912337.Google Scholar
  63. 52.
    A. R. C. Baljon and M. O. Robbins, Mat. Res. Soc. Bull. 22(1), 22 (1997)Google Scholar
  64. 52.
    and in Micro/Nanotribology and Its Applications, edited by B. Bhushan (Kluwer, Dordrecht, 1997), pp. 533–553.CrossRefGoogle Scholar
  65. 53.
    S. Aubry, in Solitons and Condensed Matter Physics, edited by A. R. Bishop and T. Schneider (Springer-Verlag, Berlin, 1979), pp. 264–290Google Scholar
  66. 53.a
    P. Bak, Rep. Prog. Phys. 45, 587 (1982).MathSciNetADSCrossRefGoogle Scholar
  67. 54.
    B. N. J. Persson, Phys. Rev. B 48, 18140 (1993).ADSCrossRefGoogle Scholar
  68. 55.
    M. R. Sørensen, K. W. Jacobsen, and P. Stoltze, Phys Rev. B 53, 2101 (1996).ADSCrossRefGoogle Scholar
  69. 56.
    B. N. J. Persson and E. Tosatti, in Physics of Sliding Friction, edited by B. N. J. Persson and E. Tosatti (Kluwer, Dordrecht, 1996), pp. 179–189.Google Scholar
  70. 57.
    C. Caroli and P. Nozieres, in Physics of Sliding Friction, edited by B. N. J. Persson and E. Tosatti (Kluwer, Dordrecht, 1996), pp. 27–49.Google Scholar
  71. 58.
    A. Volmer and T. Natterman, Z. Phys. B 104, 363 (1997).ADSCrossRefGoogle Scholar
  72. 59.
    M. H. Müser, L. Wenning, and M. O. Robbins, Phys. Rev. Lett. 86, 1295 (2001) and cond-mat/0004494.ADSCrossRefGoogle Scholar
  73. 60.
    F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1986).Google Scholar
  74. 61.
    J. A. Greenwood and J. B. P. Williamson, Proc. Roy. Soc. A 295, 300 (1966).ADSCrossRefGoogle Scholar
  75. 62.
    E. Rabinowicz, Friction and Wear of Materials (Wiley, New York, 1965).Google Scholar
  76. 63.
    D. Dowson, History of Tribology (Longman Inc., New York, 1979).Google Scholar
  77. 64.
    G. He and M. O. Robbins, Tribo. Lett. 10, 7 (2001) and cond-mat/0008196.CrossRefGoogle Scholar
  78. 65.
    J. H. Dieterich, J. Geophys. Res. 84, 2169 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gang He
    • 1
  • Mark O. Robbins
    • 1
  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations