A Sensory-Linguistic Approach to Normal and Impaired Reading Development

Part of the Neuropsychology and Cognition book series (NPCO, volume 20)


In this chapter we outline a sensory-linguistic approach to the study of reading skill development. We call this a sensory-linguistic approach because the focus of interest is on the relationship between basic sensory processing skills and the ability to extract efficiently the orthographic and phonological information available in text during reading. Our review discusses how basic sensory processing deficits are associated with developmental dyslexia, and how these impairments may degrade word-decoding skills. We then review studies that demonstrate a more direct relationship between sensitivity to particular types of auditory and visual stimuli and the normal development of literacy skills. Specifically, we suggest that the phonological and orthographic skills engaged while reading are constrained by the ability to detect and discriminate dynamic stimuli in the auditory and visual systems respectively.


Phonological Awareness Speech Perception Reading Skill Literacy Skill Poor Reader 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adlard A., & Hazan V. (1998). Speech perception abilities in children with specific reading disabilities (dyslexia). Quarterly Journal of Experimental Psychology, 51A, 153–177.Google Scholar
  2. Allington, R. L. (1978). Sensitivity to orthographic structure as a function of grade and reading ability. Journal of Reading Behavior, 10, 437–439.Google Scholar
  3. Atkinson, J., King, J., Braddick, O., Nokes, L., Anker, S., & Braddick, F. (1997). A specific deficit of dorsal stream function in Williams syndrome. Neuroreport, 8, 1919–1922.PubMedCrossRefGoogle Scholar
  4. Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzilier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Annals of Neurology, 45, 495–503.PubMedCrossRefGoogle Scholar
  5. Baker, C., Hess, R., & Zihl, J. (1991). Residual motion perception in a “motion-blind” patient, assessed with limited lifetime random dot stimuli. Journal of Neuroscience, 11, 454–461.PubMedGoogle Scholar
  6. Borsting, E., Ridder III, W., Dudeck, K., Kelly, C., Matsui, L., & Motoyama, J. (1996) The presence of a magnocellular defect depends on the type of dyslexia. Vision Research, 36, 1047–1053.PubMedCrossRefGoogle Scholar
  7. Borstrøm, I., & Elbro, C. (1997). Prevention of dyslexia in kindergarten: Effects of phoneme awareness training with children of dyslexic parents. In C. Hulme, & M. Snowling (Eds.), Dyslexia: Biology, cognition and intervention (pp. 235–253). London: Whurr Publishers.Google Scholar
  8. Bowey, J. A., & Francis, J. (1991). Phonological analysis as a function of age and exposure to reading instruction. Applied Psycholinguistics, 12, 91–121.CrossRefGoogle Scholar
  9. Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read - a casual connection. Nature, 301, 419–421.CrossRefGoogle Scholar
  10. Braddick, O. (1974). A short range process in apparent motion. Vision Research, 14, 519–527.PubMedCrossRefGoogle Scholar
  11. Braddick, O. (1993). Segmentation vs. integration in visual motion processing. Trends in Neurosciences, 16, 263–268.PubMedCrossRefGoogle Scholar
  12. Brannan, J. R., & Williams, M. C. (1987). Allocation of visual attention in good and poor readers. Perception & Psychophysics, 41, 23–28.CrossRefGoogle Scholar
  13. Brannan, J. R., & Williams, M. C. (1988a). Developmental versus sensory deficit effects on perceptual processing in the reading disabled. Perception & Psychophysics, 44, 437–444.CrossRefGoogle Scholar
  14. Brannan, J. R., & Williams, M. C. (1988b). The effects of age and reading ability on flicker threshold. Clinical Vision Science, 3, 137–142.Google Scholar
  15. Breitmeyer, B. G. (1993). Sustained (P) and transient (M) channels in vision: a review and implication for reading. In D. M. Willows, R. S Kruk, & E. Corcos (Eds.), Visual processes in reading and reading disabilities (pp. 95–110). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  16. Bruck, M. (1990). Word-recognition skills of adults with childhood diagnoses of dyslexia. Developmental Psychology, 26, 439–454.CrossRefGoogle Scholar
  17. Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371, 511–513.PubMedCrossRefGoogle Scholar
  18. Campbell, R., Whittingham, A., Frith, U., Massaro, D. W., & Cohen, M. (1997). Audiovisual speech perception in dyslexics: Impaired unimodal perception but no audiovisual integration deficit. In Proceedings of the (ECSA) workshop on audiovisual speech processing (pp. 85–89). Rhodes, Greece.Google Scholar
  19. Campbell, R., Zihl, J., Massaro, D., Munhall, K., & Cohen, M. M. (1997). Speechreading in the akinetopsic patient, L.M. Brain, 120, 1793–1803.Google Scholar
  20. Castles, A., Datta, H., Gayan, J., & Olson, R. (1999). Varieties of developmental reading disorder: Genetic and environmental influences. Journal of Experimental Child Psychology, 72, 73–94.PubMedCrossRefGoogle Scholar
  21. Castles A., & Coltheart M. (1993). Varieties of developmental dyslexia. Cognition, 47, 149–180.PubMedCrossRefGoogle Scholar
  22. Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain: Learning to read and write during childhood influences functional organization of the adult brain. Brain, 121, 1053–1063.PubMedCrossRefGoogle Scholar
  23. Cestnick, L., & Coltheart, M. (1999). The relationship between language-processing and visual-processing deficits in developmental dyslexia. Cognition, 71, 231–255.PubMedCrossRefGoogle Scholar
  24. Coltheart, M. (1978). Lexical access in simple reading tasks. In G. Underwood (Ed.), Strategies of information processing (pp. 151–216). London: Academic Press.Google Scholar
  25. Coltheart, M., & Leahy, J. (1996). Assessment of lexical and nonlexical reading abilities in children: some normative data. Australian Journal of Psychology, 48, 136–140.CrossRefGoogle Scholar
  26. Corcos, E., & Willows, D. M. (1993). The processing of orthographic information. In D. M. Willows, R. S. Kruk, & E. Corcos (Eds.), Visual processes in reading and reading disabilities (pp. 163–190). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  27. Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. (1995). Contrast sensitivity and coherent motion detection measures at photopic luminance level in dyslexic readers and controls. Vision Research, 35, 1483–1494.PubMedCrossRefGoogle Scholar
  28. Cornelissen, P. L., Hansen, P. C., Gilchrist, I., Cormack, F., Essex, J., & Frankish, C. (1998). Coherent motion detection and letter position encoding. Vision Research, 38, 2181–2191.PubMedCrossRefGoogle Scholar
  29. Cornelissen P. L., Hansen, P. C., Hutton J. L., Evangelinou V., & Stein J. F. (1998). Magnocellular function and children’s single word reading. Vision Research, 38, 471–482.PubMedCrossRefGoogle Scholar
  30. Cornsweet, T. N. (1970). Visual perception. New York: Academic Press.Google Scholar
  31. Demb, J. B., Boynton, G. M., & Heeger, D. J. (1997). Brain activation in visual cortex predicts individual differences in reading performance, Proceedings of the National Academy of Sciences (USA), 94, 13363–13366.CrossRefGoogle Scholar
  32. Demany, L., & Semal, C. (1989). Detection thresholds for sinusoidal frequency modulation. Journal of the Acoustical Society of America, 85, 1295–1301.PubMedCrossRefGoogle Scholar
  33. deWeirdt, W. (1988). Speech perception and frequency discrimination in good and poor readers. Applied Psycholinguistics, 16, 163–183.CrossRefGoogle Scholar
  34. Dougherty, R. F., Cynader, M. S., Bjornson, B. H., Edgell, D., & Giaschi, D. E. (1998). Dichotic pitch: a new stimulus distinguishes normal and dyslexic auditory function. Neuroreport, 9,3001–3005.PubMedCrossRefGoogle Scholar
  35. Drullman, R., Festen, J. M., & Plomp, R. (1994). Effect of reducing slow temporal modulations on speech reception.. Journal of the Acoustical Society of America, 95, 1053–1064.PubMedCrossRefGoogle Scholar
  36. Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 66–69.PubMedCrossRefGoogle Scholar
  37. Efron, R. (1963). Temporal perception, aphasia and déjà vu. Brain, 86,403–424.PubMedCrossRefGoogle Scholar
  38. Ehri, L. C. (1997). Sight word learning in normal readers and dyslexics. In B.A. Blachman (Ed.), Foundations of reading acquisition and dyslexia: Implications for early intervention (pp. 163–189). London: Lawrence Erlbaum.Google Scholar
  39. Ehri, L., & Wilce, L. (1985). Movement into reading: Is the first stage of printed word learning visual or phonetic? Reading Research Quarterly, 20, 163–179.CrossRefGoogle Scholar
  40. Elliot, C., Murray, D., & Pearson, L. (1983). British Abilities Scales. Windsor, UK: National Foundation for Educational Research-Nelson.Google Scholar
  41. Everatt, J., Bradshaw, M. F., & Hibbard, P. B. (1999). Visual processing and dyslexia. Perception, 28,243–254.PubMedCrossRefGoogle Scholar
  42. Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2, 460–493.CrossRefGoogle Scholar
  43. France, S. J., Rosner, B. S., Hansen, P. C., Calvin, C., Talcott, J. B., Richardson, A. J., & Stein, J. F. (in press). Auditory frequency discrimination in adult developmental dyslexics. Perception & Psychophysics.Google Scholar
  44. Frith, U. (1985). Beneath the surface of developmental dyslexia. In K. E. Patterson, J. C. Marshall, & M. Coltheart (Eds.), Surface Dyslexia (pp. 310–330). London: Routledge and Kegan Paul.Google Scholar
  45. Galaburda, A. M., Menard, M. T., & Rosen, G. D. (1994). Evidence for aberrant auditory anatomy in developmental dyslexia. Proceedings of the National Academy of Sciences (USA), 91, 8010–8013.CrossRefGoogle Scholar
  46. Gallagher, A., & Frederickson, N. (1995). The phonological assessment battery (PhAB): an initial assessment of its theoretical and practical utility. Educational and Child Psychology, 12,53–67.Google Scholar
  47. Goswami, U. (1988). Orthographic analogies and reading development. Quarterly Journal of Experimental Psychology, 40A, 239–268.Google Scholar
  48. Gross-Glenn, K., Skottun, B. C., Glenn, W., Kushch, A., Lingua, R., Dunbar, M., Jallad, B., Lubs, H. A., Levin, B., Rabin, M., Parke, L. A., & Duara, R. (1995). Contrast sensitivity in dyslexia. Visual Neuroscience, 12, 153–163.PubMedCrossRefGoogle Scholar
  49. Hansen, J., & Bowey, J. (1994). Phonological analysis skills, verbal working memory, and reading ability in second-grade children. Child Development, 65, 938–950.CrossRefGoogle Scholar
  50. Hansen, P. C., Stein, J. F., Orde, S. R., Winter, J. L., & Talcott, J. B. (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? NeuroReport, 12, 1527–1530.PubMedCrossRefGoogle Scholar
  51. Hartmann, W. M., & Hnath, G. M. (1982). Detection of mixed modulation. Acustica, 50, 297–312.Google Scholar
  52. Hatcher, P. J, Hulme, C., & Ellis, A. W. (1994). Ameliorating early reading failure by integrating the teaching of reading and phonological skills: The phonological linkage hypothesis. Child Development, 65, 41–57.CrossRefGoogle Scholar
  53. Heeger, D., Boynton, G., Demb, J., Seideman, E., & Newsome, W. (1999). Motion opponency in visual cortex. The Journal of Neuroscience, 19, 7162–7174.PubMedGoogle Scholar
  54. Helenius, R., Uutela, K., & Hari, R. (1999). Auditory stream segregation in dyslexic adults. Brain, 122, 907–913.PubMedCrossRefGoogle Scholar
  55. Hess, R., Baker, C., & Zihl, J. (1989). The “motion-blind” patient: Low-level spatial and temporal filters. Journal of Neuroscience, 9, 1628–1640.PubMedGoogle Scholar
  56. Hill, N. I., Bailey, P. J., Griffiths, Y. M., & Snowling, M. J. (1999). Frequency acuity and binaural masking release in dyslexic listeners. Journal of the Acoustical Society of America, 106, 53–58.CrossRefGoogle Scholar
  57. Hirsh, I. J., & Watson, C. S. (1996). Auditory psychophysics and perception. Annual Review of Psychology, 47, 461–484.PubMedCrossRefGoogle Scholar
  58. Hogben, J. (1997). How does a visual transient deficit affect reading? In C. Hulme, & M. Snowling (Eds.), Dyslexia: Biology, cognition, and intervention (pp. 59–71). London: Whurr Publishers.Google Scholar
  59. Jacobs, A. M., & Grainger, J. (1994). Models of visual word recognition: Sampling the state of the art. Journal of Experimental Psychology: Human Perception and Performance, 20, 1311–1334.CrossRefGoogle Scholar
  60. Jenner, A. R., Rosen, G. D., & Galaburda, A. M. (1999). Neuronal asymmetries in the primary visual cortex of dyslexic and non-dyslexic brains. Annals of Neurology, 46, 189–196.PubMedCrossRefGoogle Scholar
  61. Kaas, J. H., Hackett, T. A., & Tramo, M. J. (1999). Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9, 164–170.PubMedCrossRefGoogle Scholar
  62. Kay, R. H. (1982). Hearing of modulation in sounds. Physiological Reviews, 62, 894–975.PubMedGoogle Scholar
  63. Legge, G. E., Rubin, G. S., & Luebker, A. (1987). Psychophysics of reading-V: The role of contrast in normal vision. Vision Research, 27, 1165–1175.PubMedCrossRefGoogle Scholar
  64. Lehmkuhle, S. (1993). Neurological basis of visual processes in reading. In D. M. Willows, R. S Kruk, & E. Corcos (Eds.), Visual processes in reading and reading disabilities (pp. 77–94). Hillsdale, NJ: Erlbaum.Google Scholar
  65. Liberman, A. M., Delattre, P. C., Gerstman, L. J., & Cooper, F. S. (1956). Tempo of frequency change as a cue for distinguishing classes of speech sounds. Journal of Experimental Psychology, 52,127–137.PubMedCrossRefGoogle Scholar
  66. Livingstone, M., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences (USA), 88, 7943–7947.CrossRefGoogle Scholar
  67. Lovegrove, W. (1991). Spatial frequency processing in dyslexic and normal readers. In J. F. Stein (Vol. Ed.), Vision and visual dysfunction: Vol. 13. Vision and visual dyslexia (pp. 148–154). Boca Raton, Fl: CRC Press.Google Scholar
  68. Lovegrove, W., Bowling, A., Badcock, D., & Blackwood, M. (1980). Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science, 210, 439–440.PubMedCrossRefGoogle Scholar
  69. Lovegrove, W., Martin, F., & Slaghuis, W. (1986). A theoretical and experimental case for a visual deficit in reading disability. Cognitive Neuropsychology, 3,225–267.CrossRefGoogle Scholar
  70. Manis, F. R., Seidenberg, M. S., Doi, L. M., McBride-Chang, C., & Petersen, A. (1996). On the bases of two subtypes of developmental dyslexia. Cognition, 58, 157–195.PubMedCrossRefGoogle Scholar
  71. Manis, F., McBride-Chang, C., Seidenberg, M., Keating, P., Doi, L., Munson, B., & Petersen, A. (1997). Are speech perception deficits associated with developmental dyslexia? Journal of Experimental Child Psychology, 66, 211–235.PubMedCrossRefGoogle Scholar
  72. Martin, F., & Lovegrove, W. (1984). The effects of field size and luminance of contrast sensitivity differences between specifically reading disabled and normal readers. Neuropsychologia, 22,72–77.CrossRefGoogle Scholar
  73. Martin, F., & Lovegrove, W. (1987). Flicker contrast sensitivity in normal and specifically disabled readers. Perception, 16, 215–221.PubMedCrossRefGoogle Scholar
  74. Mason, M. (1975). Reading ability and letter search time: Effects of orthographic structure defined by single-letter positional frequency. Journal of Experimental Psychology: General, 104, 146–166.CrossRefGoogle Scholar
  75. Massaro, D. W. (1987). Speech perception by ear and eye: a paradigm for psychological inquiry. Hillsdale, NJ: Erlbaum.Google Scholar
  76. Massaro, D. W., Venezky, R. L., & Taylor, G. A. (1979). Orthographic regularity, positional frequency and visual processing of letter strings. Journal of Experimental Psychology: General, 108,107–124.CrossRefGoogle Scholar
  77. McAnally, K., & Stein, J. F. (1996). Auditory temporal coding in dyslexia. Proceedings of the Royal Society of London (B), 263, 961–965.CrossRefGoogle Scholar
  78. McBride-Chang, C. (1996). Models of speech perception and phonological processing in reading. Child Development, 67, 1836–1856.PubMedCrossRefGoogle Scholar
  79. Menell, P., McAnally, K. E., & Stein, J. F. (1999). Psychophysical sensitivity and physiological response to amplitude modulation in adult dyslexics. Journal of Speech Language and Hearing Research, 42, 797–803.Google Scholar
  80. Merigan, W., & Maunsell, J. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402.PubMedCrossRefGoogle Scholar
  81. Milner, D., & Goodale, M. (1995). The visual brain in action. Oxford, UK: Oxford University Press.Google Scholar
  82. Mody, M., Studdert-Kennedy, M., & Brady, S. (1997). Speech perception deficits in poor readers: Auditory processing or phonological coding? Journal of Experimental Child Psychology, 64, 199–231.PubMedCrossRefGoogle Scholar
  83. Moore, B. C. J. (1997). Introduction to the psychology of hearing( 4 th Ed). London: Academic Press.Google Scholar
  84. Moore, B. C. J., & Sek, A. (1995). Effects of carrier frequency, modulation rate, and modulation waveform on the detection of modulation and the discrimination of modulation type (amplitude modulation versus frequency modulation). Journal of the Acoustical Society of America, 97, 2468–2478.PubMedCrossRefGoogle Scholar
  85. Morais, J., Cary, J., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7, 323–331.CrossRefGoogle Scholar
  86. Morton, J. (1969). The interaction of information in word recognition. Psychological Review, 76, 165–178.CrossRefGoogle Scholar
  87. Nagarajan, S., Mahncke, H., Saltz, T., Tallal, P., Roberts, T., & Merzenich, M. M. (1999). Cortical auditory signal processing in poor readers. Proceedings of the National Academy of Sciences (USA), 96, 6483–6488.CrossRefGoogle Scholar
  88. Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341, 52–54.PubMedCrossRefGoogle Scholar
  89. Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion processing following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 2201–2211.PubMedGoogle Scholar
  90. Olson, R. K, Forsberg, H., & Wise, B. (1994). Genes, environment, and the development of orthographic skills. In V. Berninger (Ed.), The varieties of orthographic knowledge 1: Theoretical and development issues (pp. 27–71). Dordrecht, The Netherlands: Kluwer AcademicGoogle Scholar
  91. Olson, R., Forsberg, H., Wise, B., & Rack, J. (1994). Measurement of word recognition, orthographic, and phonological skills. In G. R. Lyon (Ed.). Frames of reference for the assessment of learning disabilities: New views on measurement issues (pp. 243–277). Baltimore: Paul H. Brookes.Google Scholar
  92. Olson, R. K., Wise, B., Conners, F., Rack, J., & Fulker, D. (1989). Specific deficits in component reading and language skills: genetic and environmental influences. Journal of Learning Disabilities, 22, 339–348.PubMedCrossRefGoogle Scholar
  93. Paulesu, W., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S. J., & Frith, C. D. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119, 143–157.PubMedCrossRefGoogle Scholar
  94. Pennington, B. F., Van Orden, G. C., Smith, S. D., Green, P. A., & Haith, M. M. (1990). Phonological processing skills and deficits in adult dyslexics. Child Development, 61, 1753–1778.PubMedCrossRefGoogle Scholar
  95. Rae, C., Lee, M. A., Dixon, R. M., Blamire, A. M., Thompson, C. H., Styles, P., Talcott, J., Richardson, A. J., & Stein, J. F. (1998). Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy. The Lancet, 351, 1840–1852.CrossRefGoogle Scholar
  96. Raymond, J. E., & Sorenson, R. (1998). Visual motion perception in children with dyslexia: Normal detection but abnormal integration. Visual Cognition, 5, 389–404.CrossRefGoogle Scholar
  97. Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8, 516–521.PubMedCrossRefGoogle Scholar
  98. Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212, 947–950.PubMedCrossRefGoogle Scholar
  99. Ridder III, W. H., Borsting, E., Cooper, M., McNeel, B., & Huang, E. (1997). Not all dyslexics are created equal. Optometry and Vision Science, 74, 99–104.PubMedCrossRefGoogle Scholar
  100. Rosen, S. (1992). Temporal information in speech: acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London Series B, 336, 367–373.PubMedCrossRefGoogle Scholar
  101. Rosen, S. (1999). Language disorders: A problem with auditory processing? Current Biology, 9,R698–R700.PubMedCrossRefGoogle Scholar
  102. Rosner, B. S., Talcott, J. B., Witton, C., Hogg, J. D., Richardson, A. J., Hansen, P. C., & Stein, J. F. (in press). The perception of “sinewave speech” by adult developmental dyslexics.Google Scholar
  103. Samar, V. J., Parasnis, I., & Berent, G. P. (1999). Deaf poor readers’ pattern reversal VEPs reveal magnocellular system deficits. Poster session presented at the annual meeting of the American Psychological Society, Denver, CO.Google Scholar
  104. Schorer, E. (1986). Critical modulation frequency based on the detection of AM versus FM tones. Journal of the Acoustical Society of America, 79, 1054–1057.PubMedCrossRefGoogle Scholar
  105. Schouten, J. F. (1940). The residue and the mechanism of hearing. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen, 43, 991–999.Google Scholar
  106. Seidenberg, M., & McClelland, J. (1989). A distributed developmental model of word recognition and naming. Psychological Review, 96, 523–568.PubMedCrossRefGoogle Scholar
  107. Shankweiler, D., Liberman, I., Mark, L., Fowler, C., & Fischer, F. (1979). The speech code and learning to read. Journal of Experimental Psychology: Human Learning and Memory, 5, 531–545.CrossRefGoogle Scholar
  108. Shapley, R. (1990). Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology, 41, 635–658.PubMedCrossRefGoogle Scholar
  109. Share, D., Jorm, A., Maclean, R., & Matthews, R. (1984). Sources of individual differences in reading acquisition. Journal of Educational Psychology, 76, 1309–1324.CrossRefGoogle Scholar
  110. Shaywitz, S. E., Escobar, M. D., Shaywitz, B. A., Fletcher, J. M., & Makuch, R. (1992). Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability. The New England Journal of Medicine, 326, 145–150.PubMedCrossRefGoogle Scholar
  111. Shaywitz, S. E., Shaywitz, B. A., Fletcher, J. M., & Escobar, M. D. (1990). Prevalence of reading disability in boys and girls: Results of the Connecticut longitudinal study. Journal of the American Medical Association, 264, 998–1002.PubMedCrossRefGoogle Scholar
  112. Skottun, B. (2000). The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Research, 40, 111–127.PubMedCrossRefGoogle Scholar
  113. Skottun, B. C., & Parke, L. A. (1999). The possible relationship between visual deficits and dyslexia: Examination of a critical assumption. Journal of Learning Disabilities, 32,2–5.PubMedCrossRefGoogle Scholar
  114. Slaghuis, W., & Lovegrove, W. J. (1985). Spatial-frequency mediated visible persistence and specific reading disability. Brain and Cognition, 4, 219–240.PubMedCrossRefGoogle Scholar
  115. Stanovich, K. E. (1988). Explaining the differences between the dyslexic and the garden-variety poor reader: the phonological core, variable-difference model. Journal of Learning Disabilities, 21, 590–612.PubMedCrossRefGoogle Scholar
  116. Stanovich, K. E., & West, R. F. (1989). Exposure to print and orthographic processing. Reading Research Quarterly, 24, 402–433.CrossRefGoogle Scholar
  117. Stanovich, K. E., West, R. F., & Cunningham, A. E. (1991). Beyond phonological processes: Print exposure and orthographic processing. In S. A. Brady, & D. P. Shankweiler (Eds.), Phonological processes in literacy: A tribute to Isabelle Y. Liberman (pp.219–235). Hillsdale, NJ: Lawrence Erlbaum PressGoogle Scholar
  118. Stefanatos, G. (1993). Frequency modulation analysis in children with Landau-Kleffner syndrome. In P. Tallal, A. Galaburda, R. Llinas, & C. Von Euler (Eds.), Temporal Information processing in the Nervous system: Special reference to dyslexia and dysphasia (pp. 412–414). New York: New York Academy of Sciences.Google Scholar
  119. Stefanatos, G., Green, G., & Ratcliffe, G. (1989). Neurophysiological evidence of auditory channel anomalies in developmental dysphasia. Archives of Neurology, 46,871–875.PubMedCrossRefGoogle Scholar
  120. Stein, J. F., Richardson, A. J., & Fowler, M. S. (2000). Monocular occlusion can improve binocular control and reading in dyslexics. Brain, 123, 164–170.PubMedCrossRefGoogle Scholar
  121. Stein, J., Talcott, J., & Walsh, V. (2000). Controversy about the evidence for a visual magnocellular deficit in developmental dyslexics. Trends in Cognitive Sciences, 4,209–211.PubMedCrossRefGoogle Scholar
  122. Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147–152.PubMedCrossRefGoogle Scholar
  123. Steinman, S. B., Steinman, B. A., & Garzia, R. P. (1998). Vision and attention. II: Is visual attention a mechanism through which a deficient magnocellular pathway might cause reading disability? Optometry and Vision Science, 75, 674–681.PubMedCrossRefGoogle Scholar
  124. Steinman, B.A., Steinman, S.B., & Lehmkuhle, S. (1997). Transient visual attention is dominated by the magnocellular stream. Vision Research, 37, 17–23.PubMedCrossRefGoogle Scholar
  125. Studdert-Kennedy, M., & Mody, M. (1995). Auditory temporal perception deficits in the reading-impaired: a critical review of the evidence. Psychonomic Bulletin & Review, 2, 508–514.CrossRefGoogle Scholar
  126. Talcott, J.B., Gram, A., Van Ingelghem, M., Witton, C., Stein, J.F. & Tonnessen, F. (in press). Impaired sensitivity to dynamic stimuli in poor readers of a transparent orthography.Google Scholar
  127. Talcott, J. B., Hansen, P. C., Willis-Owen, C, McKinnell, I. W., Richardson, A. J., & Stein, J. F. (1998). Visual magnocellular impairment in adult developmental dyslexics. Neuro-Ophthalmology, 20, 187–201.CrossRefGoogle Scholar
  128. Talcott, J. B., Witton, C., McLean, M. F., Hansen, P. C., Rees, A., Green, G. G. R., & Stein, J. R (2000). Dynamic sensory sensitivity and children’s word decoding skills. Proceedings of the National Academy of Sciences (USA), 97, 2952–2957.CrossRefGoogle Scholar
  129. Talcott, J. B., Hansen, P. C, Assoku, E. L., & Stein, J. F. (2000). Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia, 38, 935–943.PubMedCrossRefGoogle Scholar
  130. Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9, 182–198.PubMedCrossRefGoogle Scholar
  131. Tallal, P., & Piercy, M. (1973). Defects of non-verbal auditory perception in children with developmental aphasia. Nature, 241, 468–469.PubMedCrossRefGoogle Scholar
  132. Tallal, P., & Piercy, M. (1974). Developmental aphasia: Rate of auditory processing and selective impairment of consonant perception. Neuropsychologia, 12, 83–94.PubMedCrossRefGoogle Scholar
  133. Tallal, P., Merzenich, M. M, Miller, S., & Jenkins, W. (1998). Language learning impairments: Integrating basic science, technology, and remediation. Experimental Brain Research, 123, 210–219CrossRefGoogle Scholar
  134. Tangel, D. M., & Blachman, B. (1995). Effect of phoneme awareness instruction on the invented spelling of first-grade children: a one-year follow-up. Journal of Reading Behavior, 27, 153–185.Google Scholar
  135. Treiman, R., & Zukowski, A. (1991). Levels of phonological awareness. In S.A. Brady, & D. P. Shankweiler (Eds.), Phonological processes in literacy: A tribute to Isabelle Y. Liberman (pp.67–83). Hillsdale, NJ: Erlbaum.Google Scholar
  136. van Ijzendoorn, M. H., & Bus, A. G. (1994). Meta-analytic confirmation of the nonword reading deficit in developmental dyslexia. Reading Research Quarterly, 29, 267–275.Google Scholar
  137. Van Orden, G. C., & Goldinger, S. D. (1996). Phonologic mediation in skilled and dyslexic reading. In C. H. Chase, G. D. Rosen, & G. R Sherman (Eds.), Developmental dyslexia: neural, cognitive and genetic mechanisms (pp. 185–223). Baltimore, MD: York Press.Google Scholar
  138. Van Orden, G. C., Pennington, B. F., & Stone, G. O. (1990). Word identification in reading and the promise of subsymbolic psycholinguistics. Psychological Review, 97,488–522.PubMedCrossRefGoogle Scholar
  139. Van Tassel, D. J., Soli, S. D., Kirby, V. M., & Widin, G. P. (1987). Speech waveform envelope cues for consonant recognition. Journal of the Acoustical Society of America, 82, 1152–1161.CrossRefGoogle Scholar
  140. Vellutino, F. (1979). Dyslexia: Research and Theory. Cambridge, MA: MIT Press.Google Scholar
  141. Vidyasagar, T. R., & Pammer, K. (1999). Impaired visual search in dyslexia relates to the role of the magnocellular pathway in attention. Neuroreport, 10, 1283–1287.PubMedCrossRefGoogle Scholar
  142. Wagner, R. K., & Torgeson, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin, 101, 192–212.CrossRefGoogle Scholar
  143. Wagner, R. K., Torgeson, J. K., & Rashotte, C. A. (1994). Development of reading-related phonological processing abilities: New evidence of bidirectional causality from a latent variable longitudinal study. Developmental Psychology, 30, 73–87.CrossRefGoogle Scholar
  144. Walther-Müller, P. U. (1995). Is there a deficit of early vision in dyslexia? Perception, 24,919–936.PubMedCrossRefGoogle Scholar
  145. Watson, C. S., & Foyle, D. C. (1985). Central factors in the discrimination and identification of complex sounds. Journal of the Acoustical Society of America, 78 (1), 375–380.PubMedCrossRefGoogle Scholar
  146. Watson, C. S., & Kelly, W. J. (1981). The role of stimulus uncertainty in the discrimination of auditory patterns. In D. J. Getty, & J. H. Howard Jr. (Eds.), Auditory and visual pattern recognition (pp. 37–59). Hillsdale, N.J.: Erlbaum.Google Scholar
  147. Wattam-Bell, J. (1994). Coherence thresholds for discrimination of motion direction in infants. Vision Research, 34, 877–883.PubMedCrossRefGoogle Scholar
  148. Williams, M. C., Brannan, J. R., & Lartigue, E. K. (1987). Visual search in good and poor readers. Clinical Vision Sciences, 1, 367–371.Google Scholar
  149. Williams, M. C., May, J. G., Solman, R., & Zhou, H. (1995). The effects of spatial filtering and contrast reduction on visual search times in good and poor readers. Vision Research, 35, 285–291.PubMedCrossRefGoogle Scholar
  150. Witton, C., Stein, J. F., Stoodley, C. J., Rosner, B. S. & Talcott, J. B. (in press).Separate influences of acoustic AM and FM sensitivity on the phonological decoding skills of impaired and normal readers. Journal of Cognitive Neuroscience.Google Scholar
  151. Witton, C., Talcott, J. B., Hansen, P. C., Richardson, A. J., Griffiths, T. D., Rees, A., Stein, J. F., & Green, G. G. R. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current Biology, 8, 791–797.PubMedCrossRefGoogle Scholar
  152. Wood, C. & Terrell, C. (1998). Poor readers’ ability to detect speech rhythm and perceive rapid speech. British Journal of Developmental Psychology, 16, 397–413.CrossRefGoogle Scholar
  153. Zihl, J., von Cramon, D., & Mai, A. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain, 106, 313–340.PubMedCrossRefGoogle Scholar
  154. Zwicher, E. (1952). Die Grenzen der Hörbarkeit der Amplitudenmodulation und der Frequenzmodulation eines Tones. Acustica, 2,125–133.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

There are no affiliations available

Personalised recommendations