Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 242))

Abstract

Because they are terminally differentiated cells, adult cardiomyocytes cannot regenerate and there is no myocardial pool of stem cells to replace those which have suffered irreversible ischemic injury. In fact, this dogma has been recently challenged by some experimental (for a review, see1])and clinico-pathological studies [2[3]] suggesting that cardiomyocytes of infarcted or failing human hearts had actually retained a capacity of reentering a cell cycle. Whereas these observations are interesting from a cognitive standpoint, their clinical relevance is probably limited because the number of “new” cells that can be generated through this mechanism is by far too low to compensate for the loss of cardiomyocytes resulting from an infarct (or at least an infarct large enough to cause heart failure).Thus, in clinical practice, the usual responses to myocardial infarction involve evolution of the infarct zone toward a fibrous noncontractile scar and hypertrophy of cells harboured in the still viable segments of the heart. At best, these compensatory responses can temporarily maintain an adequate contractile function. At worst, the combination of interstitial fibrosis and inappropriate remodelling promote deterioration of systolic and diastolic functions and lead to heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998; 83: 15–26.

    Article  PubMed  CAS  Google Scholar 

  2. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc. Natl. Acad. Sci. USA 1998; 95: 8801–5.

    Article  PubMed  CAS  Google Scholar 

  3. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami A, Anversa P. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344: 1750–7.

    Article  PubMed  CAS  Google Scholar 

  4. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 1994; 264: 98–101.

    Article  PubMed  CAS  Google Scholar 

  5. Li R-K, Jia Z-Q, Weisel RD, Mickle DAG, Zhang J, Mohabeer MK, Rao V, Ivanov J. Cardoomyocyte transplantation improves heart function. Ann Thorac Surg 1996; 62: 654–61.

    Article  PubMed  CAS  Google Scholar 

  6. Scorsin M, Hagège AA, Marotte F, Mirochnik N, Copin H, Barnoux M, Sabri A, Samuel J-L, Rappaport L, Menasché P. Does transplantation of cardiomyocytes improve function of infarcted myocardium. Circulation 1997; 96: II-188–93.

    Google Scholar 

  7. Sakai T, Li RK, Weisel RD, Mickle DAG, Jia ZQ, Tomita S, Kim EJ, Yau TM. Fetal cell transplantation: a comparison of three cell types. J Thorac Cardiovasc Surg 1999; 118: 715–725.

    CAS  Google Scholar 

  8. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Med 1998; 4: 929–33.

    Article  PubMed  CAS  Google Scholar 

  9. Atkins BZ, Hueman MT, Meuchel JM, Coffman MJ, Hutcheson KA, Taylor DA. Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant 1999; 18: 1173–80.

    Article  PubMed  CAS  Google Scholar 

  10. Scorsin M, Hagège AA, Vilquin J-T, Fiszman M, Marotte F, Samuel J-L, Rappaport L, Schwartz K, Menasché P. Comparison of the effects of fetal cardiomyocytes and skeletal myoblast transplantation on postinfarct left ventricular function J Thorac Cardiovasc Surg 2000; 119: 1169–75.

    Article  PubMed  CAS  Google Scholar 

  11. Pouzet B, Vilquin J-T, Messas E, Scorsin M, Fiszman M, Hagège AA, Schwartz K, Menasché P. Factors affecting functional outcome following myoblast cell transplantation. Ann Thorac Surg 2000; 71: 844–51.

    Article  Google Scholar 

  12. Pouzet B, Ghostine S, Vilquin JT, Garcin I, Scorsin M, Hagège AA, Duboc D, Schwartz K, Menasché Ph. Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting enzyme inhibitors ? Circulation 2000; 102: II 682 (Abstract).

    Article  Google Scholar 

  13. Rao RL, Chin TK, Ganote CE, Hossler FE, Li C, Browder W. Satellite cell transplantation to repair injured myocardium. Cardiovasc -Res. 2000; 1: 31–42.

    Google Scholar 

  14. Chiu RC-J, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995; 60: 12–18.

    PubMed  CAS  Google Scholar 

  15. Reinecke H, McDonald GH, Hauschka SD, Murry CE.. Electromechanical coupling between skeletal and cardivac muscle. Implications for infarct repair. J Cell Biol 2000; 149: 731–40.

    Article  PubMed  CAS  Google Scholar 

  16. Atkins BZ, Lewis CW, Kraus WE, Hutcheson KA, Glower DD, Taylor DA. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg 1999; 67: 124–9.

    Article  PubMed  CAS  Google Scholar 

  17. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996; 98: 2512–23.

    Article  PubMed  CAS  Google Scholar 

  18. Menasché Ph, Hagège AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP. Myoblast transplantation for heart failure. The Lancet 2001; 357: 279–80.

    Article  Google Scholar 

  19. Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RCJ. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000; 120: 999–1006.

    Article  PubMed  CAS  Google Scholar 

  20. Orlic D, Kajstura J, Chimenti S, Jakonluc I, Anderson SM, Li B, Pickel J, McKay R, NadalGinard B, Bodline DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menasché, P. (2002). Cellular Cardiac Reinforcement. In: Doevendans, P.A., Kääb, S. (eds) Cardiovascular Genomics: New Pathophysiological Concepts. Developments in Cardiovascular Medicine, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1005-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1005-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5347-8

  • Online ISBN: 978-1-4615-1005-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics