Advertisement

Cell Interactions with Extracellular Matrix during Perinatal Development of Myocardium

  • Jane-Lyse Samuel
  • Philippe Ratajczak
  • Lydie Rappaport
Part of the Progress in Experimental Cardiology book series (PREC, volume 4)

Summary

Cardiac morphogenesis is dependent on the coordinated and programmed expression of cell surface receptors that can mediate interactions of cells with extracellular matrix (ECM) components, which in turn promote either cell adhesion or migration and determine the phenotype. Besides, the role of the membrane receptors as anchoring proteins for cytoskeleton appears prominent, the complex being implicated in different intracellular signaling cascades. A broad range of cellular processes involved in ontogenesis including, cell proliferation, growth and differentiation depend on cytokines but also on the nature of ECM components, ECM-activated receptors, induced alterations in cytoskeleton elements and transducing signals.

During perinatal myocardial growth, cardiomyocytes rapidly loose their ability to multiply and they hypertrophy, fibroblasts proliferate; the composition of the interstitial tissue varies and accompanies the remodeling of the arterial wall. It is not clear yet at which extend the expression of adhesive proteins such as fibronectin, laminin, cell surface receptors, (integrins and dystroglycans), and cytoskeleton associated proteins (vinculin, FAK, dystrophin) is coordinated and programmed in myocardium during the perinatal period of growth. We’ll review the present knowledge concerning the expression of some of these proteins during perinatal cardiac growth.

Key words

fibronectin integrins desmin laminin heart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giancotti FG, Ruoslahti E. 1999. Integrin signaling. Science 285:1028–1032.PubMedCrossRefGoogle Scholar
  2. 2.
    Tryggvason K. 1993. The laminin family. Curr Opin Cell Biol 5:877–882.PubMedCrossRefGoogle Scholar
  3. 3.
    Hsueh WA, Law RE, Do YS. 1998. Integrins, adhesion, and cardiac remodeling. Hypertension 31:176–180.PubMedCrossRefGoogle Scholar
  4. 4.
    Juliano RL, Haskill S. 1993. Signal transduction from the extracellular matrix. J Cell Biol 120:577–585.PubMedCrossRefGoogle Scholar
  5. 5.
    Hynes RO. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Ruoslahti E, Yamaguch IY. 1991. Proteoglycans as modulators of growth factor activities. Cell 64:867–869.PubMedCrossRefGoogle Scholar
  7. 7.
    Borg TK, Raso DS, Terracio L. 1990. Potential role of the extracellular matrix in postseptation development of the heart. Ann NY Acad Sci 588:87–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu X, Wu H, Byrne M, Krane S, Jaenisch R. 1997. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856.PubMedCrossRefGoogle Scholar
  9. 9.
    Pickering JG, Chow LH, Li S, Rogers KA, Rocnik EF, Zhong R, Chan BM. 2000. alpha5betal integrin expression and luminal edge fibronectin matrix assembly by smooth muscle cells after arterial injury. Am J Pathol 156:453–465.PubMedCrossRefGoogle Scholar
  10. 10.
    Samuel JL, Farhadian F, Sabri A, Marotte F, Robert V, Rappaport L. 1994. Expression of fibronectin during rat fetal and postnatal development: an in situ hybridisation and immunohistochemical study. Cardiovasc Res 28:1653–1661.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim H, Yoon CS, Kim H, Rah B. 1999. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct 24:19–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Farhadian F, Barrieux A, Lortet S, Marotte F, Oliviero P, Rappaport L, Samuel JL. 1994. Differential splicing of fibronectin pre-messenger ribonucleic acid during cardiac ontogeny and development of hypertrophy in the rat. Lab Invest 71:552–559.PubMedGoogle Scholar
  13. 13.
    George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. 1993. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091.PubMedGoogle Scholar
  14. 14.
    Campbell KP. 1995. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80:675–679.PubMedCrossRefGoogle Scholar
  15. 15.
    Koch M, Olson PF, Albus A, Jin W, Hunter DD, Brunken WJ, Burgeson RE, Champliaud MF. 1999. Characterization and expression of the laminin gamma3 chain: a novel, non-basement membrane-associated, laminin chain. J Cell Biol 145:605–618.PubMedCrossRefGoogle Scholar
  16. 16.
    Oliviero P, Chassagne C, Salichon N, Corbie RA, Hamon G, Marotte F, Charlemagne D, Rappaport L, Samuel JL. 2000. Expression of laminin alpha2 chain during normal and pathological growth of myocardium in rat and human. Cardiovasc Res 46:346–355.PubMedCrossRefGoogle Scholar
  17. 17.
    Kortesmaa J, Yurchenco P, Tryggvason K. 2000. Recombinant laminin-8 (alpha(4)beta(l)gamma(l)). Production, purification, and interactions with integrins. J Biol Chem 275:14853–14859.PubMedCrossRefGoogle Scholar
  18. 18.
    Glukhova M, Koteliansky V, Fondacci C, Marotte F, Rappaport L. 1993. Laminin variants and inte-grin laminin receptors in developing and adult human smooth muscle. Dev Biol 157:437–447.PubMedCrossRefGoogle Scholar
  19. 19.
    Bardy N, Merval R, Benessiano J, Samuel JL, Tedgui A. 1996. Pressure and angiotensin II synergis-tically induce aortic fibronectin expression in organ culture model of rabbit aorta. Evidence for a pressure-induced tissue renin-angiotensin system. Circ Res 79:70–78.PubMedCrossRefGoogle Scholar
  20. 20.
    Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J. 1988. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107:307–319.PubMedCrossRefGoogle Scholar
  21. 21.
    Hedin UL, Daum G, Clowes AW. 1997. Disruption of integrin alpha 5 beta 1 signaling does not impair PDGF-BB-mediated stimulation of the extracellular signal-regulated kinase pathway in smooth muscle cells. J Cell Physiol 172:109–116.PubMedCrossRefGoogle Scholar
  22. 22.
    MacKenna DA, Dolfi F,Vuori K, Ruoslahti E. 1998. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101:301–310.PubMedCrossRefGoogle Scholar
  23. 23.
    DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA. 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol 122:729–737.PubMedCrossRefGoogle Scholar
  24. 24.
    Lundgren E, Gullberg D, Rubin K, Borg TK, Terracio MJ,Terracio L. 1988. In vitro studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J Cell Physiol 136: 43–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Chiquet-Ehrismann R. 1995.Tenascins, a growing family of extracellular matrix proteins. Experientia 51:853–862.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsumoto K, Saga Y, Ikemura T, Sakakura T, Chiquet-Ehrismann R. 1994. The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J Cell Biol 125:483–493.PubMedCrossRefGoogle Scholar
  27. 27.
    Burch GH, Bedolli MA, McDonough S, Rosenthal SM, Bristow J. 1995. Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev Dyn 203:491–504.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto K, Dang QN, Kennedy SP, Osathanondh R, Kelly RA, Lee RT. 1999. Induction of tenascin-C in cardiac myocytes by mechanical deformation. Role of reactive oxygen species. J Biol Chem 274:21840–21846.PubMedCrossRefGoogle Scholar
  29. 29.
    Corless CL, Mendoza A, Collins T, Lawler J. 1992. Colocalization of thrombospondin and syndecan during murine development. Dev Dyn 193:346–358.PubMedCrossRefGoogle Scholar
  30. 30.
    Mann DL, Spinale FG. 1998. Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 98:1699–1702.PubMedCrossRefGoogle Scholar
  31. 31.
    Shapiro SD. 1998. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 10:602–608.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakagawa M, Terracio L, Carver W, Birkedal-Hansen H, Borg TK. 1992. Expression of collagenase and IL-1 alpha in developing rat hearts. Dev Dyn 195:87–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim HE, Dalai SS, Young E, Legato MJ, Weisfeldt ML, D. Armiento J. 2000. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106:857–866.PubMedCrossRefGoogle Scholar
  34. 34.
    Howe A, Aplin AE, Alahari SK, Juliano RL. 1998. Integrin signaling and cell growth control. Curr Opin Cell Biol 10:220–231.PubMedCrossRefGoogle Scholar
  35. 35.
    Schoenwaelder SM, Burridge K. 1999. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11:274–286.PubMedCrossRefGoogle Scholar
  36. 36.
    Fassler R, Rohwedel J, Maltsev V, Bloch W, Lentini S, Guan K, Gullberg D, Hescheler J, Addicks K, Wobus AM. 1996. Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J Cell Sci 109 (Pt 13):2989–2999.PubMedGoogle Scholar
  37. 37.
    Volk T, Fessler LI, Fessler JH. 1990. A role for integrin in the formation of sarcomeric cytoarchi-tecture. Cell 63:525–536.PubMedCrossRefGoogle Scholar
  38. 38.
    Maitra N, Flink IL, Bahl JJ, Morkin E. 2000. Expression of alpha and beta integrins during terminal differentiation of cardiomyocytes. Cardiovasc Res 47:715–725.PubMedCrossRefGoogle Scholar
  39. 39.
    Ross RS, Pham C, Shai SY, Goldhaber JI, Fenczik C, Glembotski CC, Ginsberg MH, Loftus JC. 1998. Betal integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 82:1160–1172.PubMedCrossRefGoogle Scholar
  40. 40.
    Belkin AM, Zhidkova NI, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K. 1996. Beta ID integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. J Cell Biol 132:211–226.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L. 1997. Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Physiol 273:H546–H556.PubMedGoogle Scholar
  42. 42.
    Belkin AM, Retta SF, Pletjushkina OY, Balzac F, Silengo L, Fassler R, Koteliansky VE, Burridge K, Tarone G. 1997. Muscle beta1D integrin reinforces the cytoskeleton-matrix link: modulation of integrin adhesive function by alternative splicing. J Cell Biol 139:1583–1595.PubMedCrossRefGoogle Scholar
  43. 43.
    Baudoin C, Goumans MJ, Mummery C, Sonnenberg A. 1998. Knockout and knockin of the beta1 exon D define distinct roles for integrin splice variants in heart function and embryonic development. Genes Dev 12:1202–1216.PubMedCrossRefGoogle Scholar
  44. 44.
    Brancaccio M, Cabodi S, Belkin AM, Collo G, Koteliansky VE, Tomatis D, Altruda F, Silengo L, Tarone G. 1998. Differential onset of expression of alpha 7 and beta ID integrins during mouse heart and skeletal muscle development. Cell Adhes Commun 5:193–205.PubMedCrossRefGoogle Scholar
  45. 45.
    Terracio L, Gullberg D, Rubin K, Craig S, Borg TK. 1989. Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat Rec 223:62–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Schober S, Mielenz D, Echtermeyer F, Hapke S, Poschl E, von der Mark H, Moch H, von der Mark K. 2000. The role of extracellular and cytoplasmic splice domains of alpha7-integrin in cell adhesion and migration on laminins. Exp Cell Res 255:303–313.PubMedCrossRefGoogle Scholar
  47. 47.
    Thorsteinsdottir S, Roelen BA, Goumans MJ, Ward-van Oostwaard D, Gaspar AC, Mummery CL. 1999. Expression of the alpha 6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation 64:173–184.PubMedGoogle Scholar
  48. 48.
    Veiling T, Collo G, Sorokin L, Durbeej M, Zhang H, Gullberg D. 1996. Distinct alpha 7A beta 1 and alpha 7B beta 1 integrin expressionpatterns during mouse development: alpha 7A is restricted to skeletal muscle but alpha 7B is expressed in striated muscle, vasculature, and nervous system. Dev Dyn 207:355–371.CrossRefGoogle Scholar
  49. 49.
    Shyy JY, Chien S. 1997. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713.PubMedCrossRefGoogle Scholar
  50. 50.
    Yamada KM, Miyamoto S. 1995. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 7:681–689.PubMedCrossRefGoogle Scholar
  51. 51.
    Magnusson MK, Zhang Q, Mosher DF. 1998. Fibronectin matrix: cellular regulations. In: S. A. Moussa, ed. Cell adhesion molecules and matrix proteins: role in health and diseases: Springer-Verlag and R.G. Landes Company, 221–240.Google Scholar
  52. 52.
    Giancotti FG. 2000. Complexity and specificity of integrin signalling. Nat Cell Biol 2:E13–E14.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu S, Thomas SM, Woodside DG, Rose DM, Kiosses WB, Pfaff M, Ginsberg MH. 1999. Binding of paxillin to alpha 4 integrins modifies integrin-dependent biological responses. Nature 402:676–681.PubMedCrossRefGoogle Scholar
  54. 54.
    Takahashi N, Seko Y, Noiri E, Tobe K, Kadowaki T, Sabe H, Yazaki Y. 1999. Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circ Res 84:1194–1202.PubMedCrossRefGoogle Scholar
  55. 55.
    Jones PL, Crack J, Rabinovitch M. 1997. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293.PubMedCrossRefGoogle Scholar
  56. 56.
    Cowan KN, Jones PL, Rabinovitch M. 2000. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 105:21–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Hornberger LK, Singhroy S, Cavalle-Garrido T, Tsang W, Keeley F, Rabinovitch M. 2000. Synthesis of extracellular matrix and adhesion through beta(1) integrins are critical for fetal ventricular myocyte proliferation. Circ Res 87:508–515.PubMedCrossRefGoogle Scholar
  58. 58.
    Stevenson S, Rothery S, Cullen MJ, Severs NJ. 1997. Dystrophin is not a specific component of the cardiac costamere. Circ Res 80:269–280.PubMedCrossRefGoogle Scholar
  59. 59.
    Shiraishi I, Simpson DG, Carver W, Price R, Hirozane T, Terracio L, Borg TK. 1997.Vinculin is an essential component for normal myofibrillar arrangement in fetal mouse cardiac myocytes. J Mol Cell Cardiol 29:2041–2052.PubMedCrossRefGoogle Scholar
  60. 60.
    Xu W, Baribault H, Adamson ED. 1998.Vinculin knockout results in heart and brain defects during embryonic development. Development 125:327–337.PubMedGoogle Scholar
  61. 61.
    Houzelstein D, Lyons GE, Chamberlain J, Buckingham ME. 1992. Localization of dystrophin gene transcripts during mouse embryogenesis. J Cell Biol 119:811–821.PubMedCrossRefGoogle Scholar
  62. 62.
    Mora M, Di Blasi C, Barresi R, Morandi L, Brambati B, Jarre L, Cornelio F. 1996. Developmental expression of dystrophin, dystrophin-associated glycoproteins and other membrane cytoskeletal proteins in human skeletal and heart muscle. Brain Res Dev Brain Res 91:70–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Torelli S, Ferlini A, Obici L, Sewry C, Muntoni F. 1999. Expression, regulation and localisation of dystrophin isoforms in human foetal skeletal and cardiac muscle. Neuromuscul Disord 9:541–551.PubMedCrossRefGoogle Scholar
  64. 64.
    Frank JS, Mottino G, Chen F, Peri V, Holland P, Tuana BS. 1994. Subcellular distribution of dystrophin in isolated adult and neonatal cardiac myocytes. Am J Physiol 267:C1707–C1716.PubMedGoogle Scholar
  65. 65.
    Meng H, Leddy JJ, Frank J, Holland P, Tuana BS. 1996. The association of cardiac dystrophin with myofibrils/Z-disc regions in cardiac muscle suggests a novel role in the contractile apparatus. J Biol Chem 271:12364–12371.PubMedCrossRefGoogle Scholar
  66. 66.
    Doyle DD, Goings G, Upshaw-Earley J, Ambler SK, Mondul A, Palfrey HC, Page E. 2000. Dystrophin associates with caveolae of rat cardiac myocytes: relationship to dystroglycan. Circ Res 87:480–488.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhao YY, Feron O, Dessy C, Han X, Marchionni MA, Kelly RA. 1999. Neuregulin signaling in the heart. Dynamic targeting of erbB4 to caveolar microdomains in cardiac myocytes. Circ Res 84:1380–1387.PubMedCrossRefGoogle Scholar
  68. 68.
    Watkins SC, Samuel JL, Marotte F, Bertier-Savalle B, Rappaport L. 1987. Microtubules and desmin filaments during onset of heart hypertrophy in rat: a double immunoelectron microscope study. Circ Res 60:327–336.PubMedCrossRefGoogle Scholar
  69. 69.
    Eble DM, Spinale FG. 1995. Contractile and cytoskeletal content, structure, and mRNA levels with tachycardia-induced cardiomyopathy. Am J Physiol 268:H2426–H2439.PubMedGoogle Scholar
  70. 70.
    Chien KR. 1999. Stress pathways and heart failure. Cell 98:555–558.PubMedCrossRefGoogle Scholar
  71. 71.
    Li Z, Mericskay M, Agbulut O, Buder-Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D. 1997. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139:129–144.PubMedCrossRefGoogle Scholar
  72. 72.
    Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y. 1996. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270.PubMedCrossRefGoogle Scholar
  73. 73.
    Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM, Capetanak IY. 1999. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31:2063–2076.PubMedCrossRefGoogle Scholar
  74. 74.
    Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D. 1997. Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29:2107–2124.PubMedCrossRefGoogle Scholar
  75. 75.
    Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. 2000. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298.PubMedCrossRefGoogle Scholar
  76. 76.
    Brown NH. 2000. An integrin chicken and egg problem: which comes first, the extracellular matrix or the cytoskeleton? Curr Opin Cell Biol 12:629–633.PubMedCrossRefGoogle Scholar
  77. 77.
    Towbin JA. 1998. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 10: 131–139.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jane-Lyse Samuel
    • 1
  • Philippe Ratajczak
    • 1
  • Lydie Rappaport
    • 1
  1. 1.Unité 127 INSERM, IFR Circulation, Université D DiderotHôpital LariboisièreParisFrance

Personalised recommendations