Skip to main content

Human Hibernating Myocardium-Development to Degeneration

  • Chapter
Cardiac Development

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

  • 93 Accesses

Summary

The term hibernating myocardium applies to regional left ventricular dysfunction caused by chronic ischemia. It has been postulated that this phenomenon represents a functional adaptation to the chronic lack of oxygen but our own morphological-clinical studies are in contrast to this hypothesis. Recently, we described in human hibernating myocardium a self-perpetuating continuous vicious circle of cellular degeneration, which leads to progressive tissue damage. Here, we put forward the assumption that this vicious circle of structural deterioration is initiated by a disturbed steady state between myocardial oxygen supply and demand followed by intracellular degenerative processes and extracellular repair mechanisms. Structural alterations of cardiomyocytes characterized by a reduced rate of protein synthesis and predominating degradation induce sequestration of cellular particles into the interstitial space accompanied by atrophy of cardiomyocytes. Consecutively, repair mechanisms in the extracellular matrix are initiated. During the inflammatory and fibrogenic phases of this reaction, replacement fibrosis is synthesized leading to a reduction of cell-cell-contacts and of intra- and extracellular coupling followed by derangement of mechanical and signal transduction. Due to the increasing degree of replacement fibrosis, microvascular density is reduced while the oxygen diffusion distance is increased until the oxygen supply to the cardiomyocytes becomes critical resulting in a further progression of intracellular degeneration. For this reason, we propose that this vicious circle is a self-perpetuating process of tissue injury leading to further reduction of regional left ventricular function. This circle can only be interrupted by restoration of an adequate myocardial perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahimtoola SH. 1989. The hibernating myocardium. Am Heart J 117:211–221.

    Article  PubMed  CAS  Google Scholar 

  2. Rahimtoola SH. 1993. The hibernating myocardium in ischaemia and congestive heart failure. Eur Heart J 212–220.

    Google Scholar 

  3. Heusch G. 1998. Hibernating myocardium. Physiol Rev 78:1055–1085.

    PubMed  CAS  Google Scholar 

  4. Schulz R, Rose J, Martin C, Brodde OE, Heusch G. 1993. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 88:684–695.

    Article  PubMed  CAS  Google Scholar 

  5. Schelbert HR. 1991. Positron emission tomography for the assessment of myocardial viability. Circulation 84:122–131.

    Google Scholar 

  6. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. 1987. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thai- Hum perfusion defects. J Am Coll Cardiol 10:557–567.

    Article  PubMed  CAS  Google Scholar 

  7. Dilsizian V, Bonow RO. 1993. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium [published erratum appears in Circulation 1993 Jun; 87(6):2070]. Circulation 87:1–20.

    Article  PubMed  CAS  Google Scholar 

  8. Altehoefer C, vom Dahl J, Buell U, Uebis R, Kleinhans E, Hanrath P. 1994. Comparison of thallium-201 single-photon emission tomography after rest injection and fluorodeoxyglucose positron emission tomography for assessment of myocardial viability in patients with chronic coronary artery disease. Eur J Nucl Med 21:37–45.

    PubMed  CAS  Google Scholar 

  9. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. 1991. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: comparison of thailium scintigraphy with reinjection and PET imaging with 18-fluorodeoxygluose. Circulation 83:26–37.

    Article  PubMed  CAS  Google Scholar 

  10. Baer F, Voth E, Deutsch HJ, Schneider CA, Schicha H, Sechtem U. 1994. Assessment of viable myocardium by dobutamine transoesophageal echokardiography and comparison with fluorine-18- fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 24:343–353.

    Article  PubMed  CAS  Google Scholar 

  11. Barilla F, Gheorghiade M. 1991. Low-dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 122:1522–1531.

    Article  PubMed  CAS  Google Scholar 

  12. Elsässer A, Muller KD, Vogt A, Strasser R, Gagel C, Schlepper M, Klovekorn WP. 1998. Assessment of myocardial viability: dobutamine echocardiography and thallium-201 single-photon emission computed tomographic imaging predict the postoperative improvement of left ventricular function after bypass surgery Am Heart J 136:463–475.

    Article  Google Scholar 

  13. Wijns WW, Vatner SF, Camici PG. 1998. Hibernating myocardium. N Engl J Med 339:173–181.

    Article  PubMed  CAS  Google Scholar 

  14. Gamici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J, Lammertsma AA, Liedtke AJ, Paternostxo G,Vatner SE 1997. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery desease. Circulation 96:3205–3214.

    Article  Google Scholar 

  15. Vanoverschelde JL, Wijns W, Borgers M, Hendrickx G, Depre C, Flameng W, Melin JA. 1997. Chronic myocardial hibernation in humans. Circulation 95:1961–1971.

    Article  PubMed  CAS  Google Scholar 

  16. Elsässer A, Schlepper M, Klövekorn WP, Cai WJ, Zimmermann R, Müller KD, Strasser R, Kostin S, Gagel C, Münkel B, Schaper W, Schaper J. 1997. Hibernating myocardium—an incomplete adaptation to ischemia. Circulation 96:2920–2931.

    Article  PubMed  Google Scholar 

  17. Elsässer A, Schlepper M, Zimmermann R, Klovekorn WP, Schaper J. 1998. The extracellular matrix in hibernating myocardium—a significant factor causing structural defects and cardiac dysfunction. Mol Cell Biochem 186:147–158.

    Article  PubMed  Google Scholar 

  18. Elsässer A, Decker E, Kostin S, Hein S, Skwara W, Müller KD, Greiber S, Schaper W, Klövekorn WP, Schaper J. 2000. A self-perpetuating vicious cycle of tissue damage in human hibernating myocardium. Mol Cell Biochem 213:17–28.

    Article  PubMed  Google Scholar 

  19. Weber KT, Brilla CG, Janicki JS. 1993. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res 27:341–348.

    Article  PubMed  CAS  Google Scholar 

  20. Farhadain F, Contrad F, Corbier A, Barrieux A, Rappaport L, Samuel J. 1995. Fibronectin expression during phsiological and pathological cardiac growth. J Moll Cell Cardiol 27:981–990.

    Article  Google Scholar 

  21. Knowlton AA, Connelly CM, Romo GM, Mamuya A, Apstein CS, Brecher P. 1992. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89:1060–1068.

    Article  PubMed  CAS  Google Scholar 

  22. Hynes RO. 1990. Fibronectins. Springer, New York 1–545.

    Google Scholar 

  23. Engel J, Odermatt E, Engel A, Madri J, Furthmayr H, Rohde H, Timpl R. 1981. Shapes, domain organizations and flexibility of laminin and fibronectin. J Mol Biol 150:97–120.

    Article  PubMed  CAS  Google Scholar 

  24. Weber K, Sun Y, Tyagi C, Cleutjens PM. 1994. Collagen network of the myocardium: function, structural remodeling and regulatory mechanims. J Moll Cell Cardiol 26:279–292.

    Article  CAS  Google Scholar 

  25. Weber KT. 1997. Extracellular matrix remodeling in heart failure. Circulation 96:4065–4082.

    Article  PubMed  CAS  Google Scholar 

  26. Brand T, Schneider MD. 1995. The TGFp superfamily in myocardium: ligands, receptors, transduc- tion, and function. J Moll Cell Cardiol 27:5–18.

    Article  CAS  Google Scholar 

  27. Brilla CG, Maisch B, Zhou G, Weber KT 1995. Hormonal regulation of cardiac fibroblast function. Eur Heart J 16:45–50.

    Article  PubMed  CAS  Google Scholar 

  28. Sappino AP, Schurch W, Gabbiani G. 1990. Differentiation repertoire of fibroblastics cells: expression of cytosceletal proteins as marker of phenotypic modulations. Lab Invest 63:144–161.

    PubMed  CAS  Google Scholar 

  29. Willems I, Havenith MG, De Mey JGR, Daemen MJ. 1994. The alpha-smooth muscle actin positive cells in healing human myocardial scars. Am J Path 145:868–875.

    PubMed  CAS  Google Scholar 

  30. Sun Y, Clentjens JPM, Diaz-Arias AA, Weber KT. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423–1432.

    Article  PubMed  CAS  Google Scholar 

  31. Sun Y, Weber KT. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Moll Cell Cardiol 28:851–858.

    Article  CAS  Google Scholar 

  32. Nokimoto S, Yasue H, Fujimoto K, Sakata R, Miyamoto E. 1995. Increased angiotensin converting enzyme activity in left ventricular aneurysm of patients after myocardial infarction. Cardiovasc Res 29:664–669.

    Google Scholar 

  33. Adams JC, Watt FM. 1993. Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198.

    PubMed  CAS  Google Scholar 

  34. Perlouch V, Dixon ICM, Golfman L, Beamish RE, Dhalla RS. 1993. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129:101–120.

    Article  Google Scholar 

  35. Weber KT, Sun Y, Katwa LC, Cleutjens JPM. 1995. Connective tissue: a metabolic entity? J Moll Cell Cardiol 27:107–120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Elsässer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elsässer, A., Kostin, S., Schaper, J. (2002). Human Hibernating Myocardium-Development to Degeneration. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics