Metabolic Differences between Pediatric and Adult Hearts: Implications for Cardiac Surgery

  • M.-S. Suleiman
  • H. Imura
  • M. Caputo
  • G. D. Angelini
  • P. Modi
  • R. Ascione
  • A. Lotto
  • A. Parry
  • A. Pawade
Part of the Progress in Experimental Cardiology book series (PREC, volume 4)


Recent evidence suggests that during open heart surgery, pediatric hearts are more vulnerable to reperfusion injury compared to adult hearts. Metabolic differences between pediatric and adult myocardium may, in part, be responsible for the reported increased vulnerability of pediatric hearts. The aim of this work was to compare the metabolic state of both pediatric and adult hearts prior to open heart surgery. Ventricular biopsies were collected at the beginning of crossclamp time from hearts of 42 pediatric and 41 adult patients. Adenine nucleotides (ATP, ADP, AMP), purines (inosine, adenosine), amino acids (glutamate and alanine) and lactate were determined in all biopsies. There were no differences in the myocardial concentration of ATP, ADP, AMP, inosine and adenosine between pediatric and adult hearts. However, pediatric hearts had significantly higher lactate levels and lower levels of amino acids compared to adult hearts. These metabolic differences may offer an explanation for why pediatric hearts show more reperfusion injury than adult hearts during open heart surgery.

Key words pediatric myocardium metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melrose DG, Dreyer B, Bentall HH, et al. 1955. Elective cardiac arrest. J Thorac Cardiovasc Surg 2:21–22.Google Scholar
  2. 2.
    Hammon JW. 1995. Myocardial protection in the immature heart. Ann Thorac Surg 60:839–842.PubMedCrossRefGoogle Scholar
  3. 3.
    Ostadal B, Ostadalova I, Dhalla NS. 1999. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79(3):635–659.PubMedGoogle Scholar
  4. 4.
    Ostadal B, Kolar F, Parratt JR, et al. 1998. Tolerance to ischemia and ischemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865.PubMedCrossRefGoogle Scholar
  5. 5.
    Linakis JG, Raymond RM. 1999. Effect of amiloride on age-dependent cardiac dysfunction after ischemia/reperfusion in the isolated, perfused rat heart. Shock 11:218–223.PubMedCrossRefGoogle Scholar
  6. 6.
    Southworth R, Shattock MJ, Hearse DJ, et al. 1998. Developmental differences in superoxide production in isolated guinea-pig hearts during reperfusion. J Mol Cell Cardiol 30:1391–1399.PubMedCrossRefGoogle Scholar
  7. 7.
    Starnes JW, Bowles DK, Seiler KS. 1997. Myocardial injury after hypoxia in immature adult and aged rats. Aging-Clin Experimental Res 9:268–276.Google Scholar
  8. 8.
    Murashita T, Borgers M, Hearse DJ. 1992. Developmental changes in tolerance to ischemia in the rabbit heart: Disparity between interpretations of structural, enzymatic and functional indices of injury. J Mol Cell Cardiol 24:1143–1154.PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy CE, Salter DR, Morris JJ, et al. 1986. Age-related differences in adenine nucleotide metabolism during in vivo global ischemia. Surg Forum 37:288–290.Google Scholar
  10. 10.
    Jonas RA. 1998. Myocardial protection for neonates and infants. Thorac Cardiovasc Surg 46:288–291.PubMedCrossRefGoogle Scholar
  11. 11.
    Itoi T, Lopaschuk GD. 1996. Calcium improves mechanical function and carbohydrate metabolism following ischemia in isolated bi-ventricular working hearts from immature rabbits. J Mol Cell Cardiol 28:1501–1514.PubMedCrossRefGoogle Scholar
  12. 12.
    Matherne GP, Berr SS, Headrick JP. 1996. Integration of vascular, contractile, and metabolic responses to hypoxia: Effects of maturation and adenosine. Am J Physiol 39:R895–R905.Google Scholar
  13. 13.
    Lopaschuk GD, Spafford MA. 1992. Differences in myocardial ischemic tolerance between 1-day-old and 7-day-old rabbits. Can J Physiol Pharmacol 70:1315–1323.PubMedCrossRefGoogle Scholar
  14. 14.
    Pearl JM, Laks H, Drinkwater DC, et al. 1993. Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia. J Thorac Cardiovasc Surg 105:201–206.PubMedGoogle Scholar
  15. 15.
    Carr LJ, Vanderwerf QM, Anderson SE, et al. 1992. Age-related response of rabbit heart to normothermic ischemia: A 31P-MRS study. Am J Physiol 262:H391-H398.PubMedGoogle Scholar
  16. 16.
    Kempsford RJD, Hearse DJ. 1990. Protection of the immature heart Temperature-dependent beneficial or detrimental effects of multidose crystalloid cardioplegia in the neonatal rabbit heart. J Thorac Cardiovasc Surg 99:269–279.PubMedGoogle Scholar
  17. 17.
    Watanabe H, Yokosawa T, Eguchi S, et al. 1989. Functional and metabolic protection of the neonatal myocardium from ischemia. Insufficient protection by cardioplegia. J Thorac Cardiovasc Surg 97:50–58.PubMedGoogle Scholar
  18. 18.
    Boiling K, Kronon M, Allen BS, et al. 1997. Myocardial protection in normal and hypoxically stressed neonatal hearts: The superiority of blood versus crystalloid cardioplegia. J Thorac Cardiovasc Surg 113:994–1003.CrossRefGoogle Scholar
  19. 19.
    Karck M, Ziemer G, Haverich A. 1996. Myocardial protection in chronic volume overload hypertrophy of immature rat hearts. Eur J Cardiothorac Surg 10:690–698.PubMedCrossRefGoogle Scholar
  20. 20.
    Corno AF, Bethencourt DM, Laks H, et al. 1987. Myocardial protection in the neonatal heart. A comparison of topical hypothermia and crystalloid and blood cardioplegic solutions. J Thorac Cardiovasc Surg 93:163–172.PubMedGoogle Scholar
  21. 21.
    Baker JE, Boerboom LE, Olinger GN. 1990. Is protection of ischemic neonatal myocardium by cardioplegia species dependent? J Thorac Cardiovasc Surg 99:280–287.PubMedGoogle Scholar
  22. 22.
    Baker EJ, Boerboom LE, Olinger GN, Baker JE. 1995. Tolerance of the developing heart to ischemia: impact of hypoximia from birth. Am J Physiol 268:H1165–H1173.PubMedGoogle Scholar
  23. 23.
    Taggart DP, Hadjinikolas L, Wong K, et al. 1996. Vulnerability of pediatric myocardium to cardiac surgery. Heart 76:214–217.PubMedCrossRefGoogle Scholar
  24. Imura H, Caputo M, Ascione R, Pawade A, Suleiman M-S, Angelini GD. Cardiac troponin I is a predictor of early clinical outcome in arterial switch operation. Presented at the 14th Annual Meeting of the European Association for Cardio-Thoracic Surgery. Frankfurt 7–11 October 2000; Abstract Book: P140.Google Scholar
  25. 25.
    Suleiman M-S, Dihmis WC, Caputo M, et al. 1997. Changes in myocardial concentration of gluta- mate and aspartate during coronary artery surgery. Am J Physiol 272:H1063–H1069.PubMedGoogle Scholar
  26. 26.
    Caputo M, Ascione R, Angelini GD, et al. 1998. The end of the cold era: from intermittent cold to intermittent warm blood cardioplegia. Eur J Cardiothorac Surg 14:467–475.PubMedCrossRefGoogle Scholar
  27. 27.
    Caputo M, Dihmis WC, Bryan AJ, et al. 1998. Warm blood hyperkalaemic reperfusion (hot shot) prevents myocardial substrate derangement in patients undergoing coronary artery bypass surgery. Eur J Cardiothorac Surg 13:559–564.PubMedCrossRefGoogle Scholar
  28. 28.
    Caputo M, Bryan AJ, Calafiore AM, et al. 1998. Intermittent antegrade hyperkalemic warm blood cardioplegia supplemented with magnesium prevents myocardial substrate derangement in patients undergoing coronary artery bypass surgery. Eur J Cardiothoracic Surg 14:596–601.CrossRefGoogle Scholar
  29. 29.
    Smolensky RT, Lachno DR, Ledingham SJM, et al. 1996. Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantation. J Chromatography 527:414–420.Google Scholar
  30. 30.
    Cyran SE, Phillips J, Ditty S, et al. 1993. Developmental differences in cardiac myocyte calcium homeostasis after steady-state potassium depolarization-mechanisms and implications for cardioplegia. J Pediat 122:77–83.CrossRefGoogle Scholar
  31. 31.
    Goodwin GW, Taegtmeyer. 2000. Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol (in press).Google Scholar
  32. 32.
    Baker JE, Curry BD, Olinger GN, et al. 1997. Increased tolerance of the chronically hypoxic immature heart to ischemia Contribution of the KATP channel. Circulation 95:1278–1285.PubMedCrossRefGoogle Scholar
  33. 33.
    Buckberg GD. 1995. Update on current techniques of myocardial protection. Ann Thorac Surg 60:805–814.PubMedCrossRefGoogle Scholar
  34. 34.
    Mudge GH, Mills RM, Taegtmeyer H, et al. 1976. Alterations of myocardial aminoacid metabolism in chronic ischaemic heart disease. J Clin Invest 58:1185–1192.PubMedCrossRefGoogle Scholar
  35. 35.
    Pisarenko OI. 1996. Mechanisms of myocardial protection by amino acids: facts and hypothesis. Clin Exp Pharm Physiol 23:627–633.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • M.-S. Suleiman
    • 1
  • H. Imura
    • 1
  • M. Caputo
    • 1
  • G. D. Angelini
    • 1
  • P. Modi
    • 1
  • R. Ascione
    • 1
  • A. Lotto
    • 1
  • A. Parry
    • 2
  • A. Pawade
    • 2
  1. 1.Bristol Heart InstituteBristolUK
  2. 2.Bristol Royal Infirmary, and The Royal Hospital for Sick ChildrenUniversity of BristolBristolUK

Personalised recommendations