Skip to main content

Interaction of Cell Cycle Regulatory Proteins with the Androgen Receptor

  • Chapter
Steroid Hormones and Cell Cycle Regulation

Abstract

Androgen signaling is a key determinant in the development and maintenance of the male reproductive system, and also plays a critical role in associated pathologies such as prostate cancer. The androgen receptor (AR), a member of the steroid receptor (SR) subgroup of the nuclear receptor (NR) superfamily, modulates gene expression in response to androgens in target tissues including the brain, liver, pituitary gland and prostate (Chang et al., 1995). SRs have a conserved domain structure that includes ligand-independent and ligand-dependent activation functions (AF-1 & AF-2) and a general mechanism of action (White et al., 1998). In response to ligands, SRs undergo a conformational change within the ligand-binding domain (LBD), dissociate from chaperone proteins and form homodimers (White et al., 1998). The activated receptor dimer then enhances target gene expression from response elements within the target gene promoter by modulating the activity of the general transcription machinery (White et al., 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan, X.Y., Sauter, G., Kallioniemi, O.P., Trent, J.M., and Meltzer, P.S. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968.

    Article  PubMed  CAS  Google Scholar 

  • Bartkova, J., Lukas, J., Muller, H., Lutzhoft, D., Strauss, M., and Bartek, J. 1994. Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 57, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Blok, L.J., de Ruiter, P.E., and Brinkmann, A.O. 1996. Androgen receptor phosphorylation. Endocr Res 22, 197–219.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, J.D., Bova, G.S., and Isaacs, W.B. 1995. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 26, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., Saltzman, A., Yeh, S., Young, W., Keller, E., Lee, H.J., Wang, C., and Mizokami, A. 1995. Androgen receptor: an overview. Crit Rev Eukaryot Gene Expr 5, 97–125.

    Article  PubMed  CAS  Google Scholar 

  • Desai, D., Gu, Y., and Morgan, D.O. 1992. Activation of human cyclin-dependent kinases in vitro. Mol Biol Cell 3, 571–582.

    PubMed  CAS  Google Scholar 

  • Fourcade, R.O., and Chatelain, C. 1998. Androgen deprivation for prostatic carcinoma: a rationale for choosing components. Int J Urol 5, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, N., Yeh, S., Kang, H.Y., Inui, S., Chang, H.C., Mizokami, A., and Chang, C. 1999. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 274, 8316–8321.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.K., Murphree, A.L., T’Ang, A., Qian, J., Hinrichs, S.H., and Benedict, W.F. 1987. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Harbour, J.W., and Dean, D.C. 2000. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14, 2393–2409.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J.W., and Elledge, S.J. 1998. The role of Cdk7 in CAK function, a retroretrospective. Genes Dev 12, 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, P.W., and Chang, C. 1999. Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J Biol Chem 274, 22373–22379.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, P.W., Lin, D.L., Nakao, R., and Chang, C. 1999. The linkage of Kennedy’s neuron disease to ARA24, the first identified androgen receptor polyglutamine regionassociated coactivator. J Biol Chem 274, 20229–20234.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S.C., Qi, M., and DeFranco, D.B. 1992. Cell cycle regulation of glucocorticoid receptor function. Embo J 11, 3457–3468.

    PubMed  CAS  Google Scholar 

  • Kang, H.Y., Yeh, S., Fujimoto, N., and Chang, C. 1999. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem 274, 8570–8576.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, K.E., Arden, K.C., and Cavenee, W.K. 1998. Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 273, 20213–20222.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, K.E., Cavenee, W.K., and Arden, K.C. 1999. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59, 2297–2301.

    PubMed  CAS  Google Scholar 

  • Kouzarides, T. 1999. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Krstic, M.D., Rogatsky, I., Yamamoto, K.R., and Garabedian, M.J. 1997. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 17, 3947–3954.

    PubMed  CAS  Google Scholar 

  • Lee, D.K., Duan, H.O., and Chang, C. 2000. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator. J Biol Chem 275, 9308–9313.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., and Danielsen, M. 1998. Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein. J Biol Chem 273, 31528–31533.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., Liu, M., Epner, D.E., Tsai, S.Y., and Tsai, M.J. 1999. Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 13, 376–384.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., Tsai, S.Y., and Tsai, MJ. 1997. Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res 57, 4511–4516.

    PubMed  CAS  Google Scholar 

  • Ludlow, J.W., DeCaprio, J.A., Huang, C.M., Lee, W.H., Paucha, E., and Livingston, D.M. 1989. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M.E., Gronemeyer, H., Turcotte, B., Bocquel, M.T., Tasset, D., and Chambon, P. 1989. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57, 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, S.H., Zhu, W., and Young, C.Y. 1999. Resveratrol inhibits the expression and the androgen receptor in LNCaP prostate cancer cells. Cancer Res 59, 5892–5895.

    PubMed  CAS  Google Scholar 

  • Miyamoto, H., Yeh, S., Wilding, G., and Chang, C. 1998. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci USA 95, 7379–7384.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13, 261–291.

    Article  PubMed  CAS  Google Scholar 

  • Muchardt, C., and Yaniv, M. 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. Embo J 12, 4279–4290.

    PubMed  CAS  Google Scholar 

  • Onate, S.A, Tsai, S.Y., Tsai, M.J., and O’Malley, B.W. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Reutens, A.T., Fu, M., Wang, C., Albanese, C., McPhaul, M.J., Sun, Z., Balk, S.P., Janne, O. A, Palvimo, J.J., and Pestell, R.G. 2001. Cyclin D1 Binds the Androgen Receptor and Regulates Hormone-Dependent Signaling in a p300/CBP-Associated Factor (P/CAF)-Dependent Manner. Mol Endocrinol 15, 797–811.

    Article  PubMed  CAS  Google Scholar 

  • Robyr, D., Wolffe, A.P., and Wahli, W. 2000. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 14, 329–347.

    Article  PubMed  CAS  Google Scholar 

  • Rochette-Egly, C., Adam, S., Rossignol, M., Egly, J.M., and Chambon, P. 1997. Stimulation of RAR alpha activation function AF-1 through binding to the general transcript ion factor TFIIH and phosphorylation by CDK7. Cell 90, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P., Coe, J., and Hong, W. 1995. A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374, 562–565.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, M.J., Lee, T., and Kirschner, M.W. 1992. Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol Biol Cell 3, 13–27.

    PubMed  CAS  Google Scholar 

  • Svejstrup, J.Q., Vichi, P., and Egly, J.M. 1996. The multiple roles of transcription/repair factor TFIIH. Trends Biochem Sci 21, 346–350.

    PubMed  CAS  Google Scholar 

  • Trowbridge, J.M., Rogatsky, I., and Garabedian, M.J. 1997. Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex. Proc Natl Acad Sci USA 94, 10132–10137.

    Article  PubMed  CAS  Google Scholar 

  • Valay, J.G., Simon, M., and Faye, G. 1993. The kin28 protein kinase is associated with a cyclin in Saccharomyces cerevisiae. J Mol Biol 234, 307–310.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, N.L. 1996. Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319, 657–667.

    PubMed  CAS  Google Scholar 

  • White, R. and Parker, M.G. 1998. Molecular mechanisms of steroid hormone action. Endocr Relate Cancer 5, 1–14.

    Article  CAS  Google Scholar 

  • Yamamoto, A., Hashimoto, Y., Kohri, K., Ogata, E., Kato, S., Ikeda, K., and Nakanishi, M. 2000. Cyclin E as a coactivator of the androgen receptor. J Cell Biol 150, 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H., and Nakatani, Y. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A Nature 382, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S., and Chang, C. 1996. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 93, 5517–5521.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S., Kang, H.Y., Miyamoto, H., Nishimura, K., Chang, H.C., Ting, H.J., Rahman, M., Lin, H.K., Fujimoto, N., Hu, Y.C., Mizokami, A., Huang, K.E., and Chang, C. 1999a. Differential induction of androgen receptor transactivation by different androgen receptor coactivators in human prostate cancer DU145 cells. Endocrine 11, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S., Lin, H.K., Kang, H.Y., Thin, T.H., Lin, M.F., and Chang, C. 1999b. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96, 5458–5463.

    Google Scholar 

  • Yeh, S., Miyamoto, H., Nishimura, K., Kang, H., Ludlow, J., Hsiao, P., Wang, C., Su, C., and Chang, C. 1998b. Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells. Biochem Biophys Res Commun 248, 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S., Miyamoto, H., Shima, H., and Chang, C. 1998a. From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci USA 95, 5527–5532.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, S., Sampson, E.R., Lee, D.K., Kim, E., Hsu, C.L., Chen, Y.L., Chang, H.C., Altuwaijri, S., Huang, K.E., and Chang, C. 2000. Functional analysis of androgen receptor N-terminal and ligand binding domain interacting coregulators in prostate cancer. J Formos Med Assoc 99, 885–894.

    PubMed  CAS  Google Scholar 

  • Zwijsen, R.M., Wientjens, E., Klompmaker, R., van der Sman, J., Bernards, R., and Michalides, R.J. 1997. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88, 405–415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Sceince+Business Media New York

About this chapter

Cite this chapter

Sampson, E.R. et al. (2002). Interaction of Cell Cycle Regulatory Proteins with the Androgen Receptor. In: Burnstein, K.L. (eds) Steroid Hormones and Cell Cycle Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0965-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0965-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5327-0

  • Online ISBN: 978-1-4615-0965-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics