Leishmania pp 169-190 | Cite as

Anti-Leishmania Vaccine

  • Antonio Campos-Neto
Part of the World Class Parasites book series (WCPA, volume 4)

Abstract

Vaccination against cutaneous leishmaniasis has been used or tested in humans for approximately 75 years. In the Old World, deliberated inoculation of virulent organisms from the pus of an active lesion (probably L. major) in non-exposed areas of the body is an ancient practice. Promastigotes of L. major grown in culture was first used in Russia in 1937 by Lawrow and Dubowokoj as a means to effectively induce protection against natural infection (1). More recently, standardized inoculum of culture promastigotes were developed by Israeli scientists and used in several trials (2). This process known as leishmanization is still used in some countries, notably Uzbekistan (3). Leishmanization has been proven to be efficacious against Old World cutaneous leishmaniasis (4). However, several basic and logistic problems have precluded the widespread use of this procedure to prevent cutaneous leishmaniasis. Some of these problems include: 1. Difficulty in standardizing the virulence of the vaccine; and 2. Side effects such as the severe and long lasting lesions that occur in many vaccinated individuals (5). Moreover, there are no evidences of the effectiveness of leishmanization against either New World tegumental leishmaniasis or against human visceral leishmaniasis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Modabber, F., M. L. Chance, D. A. Evans, E. E. Zijstra, A. M. El Hassan, P. A. Kager, R. W. Ashford, N. C. Hepburn, A. H. S. Omer, and J.-P. Dedet. 1999. The Leishmaniasis. In Protozoal Diseases. Herbert M.Gilles, ed. Arnold, London, Sydney, Auckland, pp. 413–529.Google Scholar
  2. 2.
    Handman, E., D. T. Spira, A. Zuckerman, and B. Montilio. 1974. Standardization and quality control of Leishmania tropica vaccine. J. Biol. Stand. 2:223.PubMedCrossRefGoogle Scholar
  3. 3.
    Sergiev, V. P. 1992. Control and prophylaxis of cutaneous leishmaniasis in the middle Asia republics of the former USSR. Bull. Soc. Fran. Parasit. 10:183.Google Scholar
  4. 4.
    Nadim, A., E. Javadian, G. Tahvildar-Bidruni, and M. Ghorbani. 1983. Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bull Soc. Pathol. Exot. Filiales. 76:377.PubMedGoogle Scholar
  5. 5.
    Modabber, F. 1989. Experiences with vaccines against cutaneous leishmaniasis: of men and mice. Parasitology 98 Suppl:S 49–S60.CrossRefGoogle Scholar
  6. 6.
    Convit, J. 1996. Leishmaniasis: Immunological and clinical aspects and vaccines in Venezuela. Clin. Dermatol. 14:479.PubMedCrossRefGoogle Scholar
  7. 7.
    Antunes, C. M., W. Mayrink, P. A. Magalhaes, C. A. Costa, M. N. Melo, M. Dias, M. S. Michalick, P. Williams, A. O. Lima, J. B. Vieira, and. 1986. Controlled field trials of a vaccine against New World cutaneous leishmaniasis. Int. J. Epidemiol 15:572.PubMedCrossRefGoogle Scholar
  8. 8.
    Armijos, R. X., Weigel, M. M., Aviles, H., Maldonado, R. & Racines, J. 1998. Field trial of a vaccine against New World cutaneous leishmaniasis in an at-risk child population: safety, immunogenicity, and efficacy during the first 12 months of follow-up. J. Infect. Dis 177: 1352–1357.PubMedCrossRefGoogle Scholar
  9. 9.
    Sharifi, I., A. R. FeKri, M. R. Aflatonian, A. Khamesipour, A. Nadim, M. R. Mousavi, A. Z. Momeni, Y. Dowlati, T. Godal, F. Zicker, P. G. Smith, and F. Modabber. 1998. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351:1540.PubMedCrossRefGoogle Scholar
  10. 10.
    Khalil, E. A., A. M. El Hassan, E. E. Zijlstra, M. M. Mukhtar, H. W. Ghalib, B. Musa, M. E. Ibrahim, A. A. Kamil, M. Elsheikh, A. Babiker, and F. Modabber. 2000. Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, doubleblind, BCG-controlled trial in Sudan. Lancet 356:1565.PubMedCrossRefGoogle Scholar
  11. 11.
    Randrianarison-Jewtoukoff, V. and M. Perricaudet. 1995. Recombinant adenoviruses as vaccines. Biologicals 23:145.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, W. W. 1999. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther. 6:113.PubMedCrossRefGoogle Scholar
  13. 13.
    Babiuk, L. A. and S. K. Tikoo. 2000. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J. Biotechnol. 83:105.PubMedCrossRefGoogle Scholar
  14. 14.
    Paoletti, E. 1996. Applications of pox virus vectors to vaccination: an update. Proc. Natl. Acad. Sci. U. S. A 93:11349.PubMedCrossRefGoogle Scholar
  15. 15.
    Walther, W. and U. Stein. 2000. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60:249.PubMedCrossRefGoogle Scholar
  16. 16.
    Kafri, T. 2001. Lentivirus vectors: difficulties and hopes before clinical trials. Curr. Opin. Mol. Ther. 3:316.PubMedGoogle Scholar
  17. 17.
    Falk, L. A., K. L. Goldenthal, J. Esparza, M. T. Aguado, S. Osmanov, W. R. Ballou, S. Beddows, N. Bhamarapravati, G. Biberfeld, G. Ferrari, D. Hoft, M. Honda, A. Jackson, Y. Lu, G. Marchai, J. McKinney, and S. Yamazaki. 2000. Recombinant bacillus Calmette-Guerin as a potential vector for preventive HIV type 1 vaccines. AIDS Res. Hum. Retroviruses 16:91.CrossRefGoogle Scholar
  18. 18.
    Gicquel, B. 1995. BCG as a vector for the construction of multivalent recombinant vaccines. Biologicals 23:113.PubMedCrossRefGoogle Scholar
  19. 19.
    Fooks, A. R. 2000. Development of oral vaccines for human use. Curr. Opin. Mol. Ther. 2:80.PubMedGoogle Scholar
  20. 20.
    Levine, M. M., J. Galen, E. Barry, F. Noriega, S. Chatfield, M. Sztein, G. Dougan, and C. Tacket. 1996. Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors. J. Biotechnol. 44:193.PubMedCrossRefGoogle Scholar
  21. 21.
    Hone, D. M., G. K. Lewis, M. Beier, A. Harris, T. McDaniels, and T. R. Fouts. 1994. Expression of human immunodeficiency virus antigens in an attenuated Salmonella typhi vector vaccine. Dev. Biol. Stand. 82:159.Google Scholar
  22. 22.
    Cunningham, J. A., J. D. Kellner, P. J. Bridge, C. L. Trevenen, D. R. Mcleod, and H. D. Davies. 2000. Disseminated bacille Calmette-Guerin infection in an infant with a novel deletion in the interferon-gamma receptor gene. Int. J. Tuberc. Lung Dis 4:791.PubMedGoogle Scholar
  23. 23.
    Abramowsky, C., B. Gonzalez, and R. U. Sorensen. 1993. Disseminated bacillus Calmette-Guerin infections in patients with primary immunodeficiencies. Am. J. Clin. Pathol. 100:52.PubMedGoogle Scholar
  24. 24.
    Jouanguy, E., F. Altare, S. Lamhamedi, P. Revy, J. F. Emile, M. Newport, M. Levin, S. Blanche, E. Seboun, A. Fischer, and J. L. Casanova. 1996. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N. Engl. J. Med. 335:1956.PubMedCrossRefGoogle Scholar
  25. 25.
    Newport, M. J., C. M. Huxley, S. Huston, C. M. Hawrylowicz, B. A. Oostra, R. Williamson, and M. Levin. 1996. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335:1941.PubMedCrossRefGoogle Scholar
  26. 26.
    Uysal, G., M. A. Guven, and O. Sanal. 1999. Subcutaneous nodules as presenting sign of disseminated BCG infection in a SCID patient. Infection 27:293.PubMedGoogle Scholar
  27. 27.
    Piedra, P. A., G. A. Poveda, B. Ramsey, K. McCoy, and P. W. Hiatt. 1998. Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: implication for gene therapy with adenovirus vectors. Pediatrics 101:1013.PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt, N. J., E. H. Lennette, and C. J. King. 1966. Neutralizing, hemagglutination-inhibiting and group complement-fixing antibody responses in human adenovirus infections. J. Immunol. 97:64.PubMedGoogle Scholar
  29. 29.
    Moffatt, S., J. Hays, H. HogenEsch, and S. K. Mittal. 2000. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 272:159.PubMedCrossRefGoogle Scholar
  30. 30.
    Xiang, Z. Q., Y. Yang, J. M. Wilson, and H. C. Ertl. 1996. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 219:220.PubMedCrossRefGoogle Scholar
  31. 31.
    Convit, J., P. L. Castellanos, A. Rondon, M. E. Pinardi, M. Ulrich, M. Castes, B. Bloom, and L. Garcia. 1987. Immunotherapy versus chemotherapy in localised cutaneous leishmaniasis. Lancet 1:401.PubMedCrossRefGoogle Scholar
  32. 32.
    Momeni, A. Z., T. Jalayer, M. Emamjomeh, A. Khamesipour, F. Zicker, R. L. Ghassemi, Y. Dowlati, I. Sharifi, M. Aminjavaheri, A. Shafiei, M. H. Alimohammadian, R. Hashemi- Fesharki, K. Nasseri, T. Godal, P. G. Smith, and F. Modabber. 1999. A randomised, doubleblind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine 17:466.PubMedCrossRefGoogle Scholar
  33. 33.
    Bahar, K., Y. Dowlati, B. Shidani, M. H. Alimohammadian, A. Khamesipour, S. Ehsasi, R. Hashemi-Fesharki, S. Ale-Agha, and F. Modabber. 1996. Comparative safety and immunogenicity trial of two killed Leishmania major vaccines with or without BCG in human volunteers. Clin. Dermatol. 14:489.PubMedCrossRefGoogle Scholar
  34. 34.
    Connell, N. D., E. Medina-Acosta, W. R. McMaster, B. R. Bloom, and D. G. Russell. 1993. Effective immunization against cutaneous leishmaniasis with recombinant bacilli Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc. Natl. Acad. Sci. U. S. A 90:11473.PubMedCrossRefGoogle Scholar
  35. 35.
    Abdelhak, S., H. Louzir, J. Timm, L. Blel, Z. Benlasfar, M. Lagranderie, M. Gheorghiu, K. Dellagi, and B. Gicquel. 1995. Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology 141:1585.PubMedCrossRefGoogle Scholar
  36. 36.
    Streit, J. A., T. J. Recker, J. E. Donelson, and M. E. Wilson. 2000. BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice. Exp. Parasitol. 94:33.PubMedCrossRefGoogle Scholar
  37. 37.
    McMahon-Pratt, D., D. Rodriguez, J. R. Rodriguez, Y. Zhang, K. Manson, C. Bergman, L. Rivas, J. F. Rodriguez, K. L. Lohman, and N. H. Ruddle. 1993. Recombinant vaccinia viruses expressing GP46/M-2 protect against leishmania infection. Infect. Immun. 61:3351.PubMedGoogle Scholar
  38. 38.
    Yang, D. M., N. Fairweather, L. L. Button, W. R. McMaster, L. P. Kahl, and F. Y. Liew. 1990. Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J. Immunol. 145:2281.PubMedGoogle Scholar
  39. 39.
    Xu, D., S. J. McSorley, S. N. Chatfield, G. Dougan, and F. Y. Liew. 1995. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology 85:1.PubMedGoogle Scholar
  40. 40.
    McSorley, S. J., D. Xu, and F. Y. Liew. 1997. Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infect. Immun. 65:171.PubMedGoogle Scholar
  41. 41.
    Gonzalez, C. R., F. R. Noriega, S. Huerta, A. Santiago, M. Vega, J. Paniagua, V. Ortiz- Navarrete, A. Isibasi, and M. M. Levine. 1998. Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania mexicana mexicana. Vaccine 16:1043.PubMedCrossRefGoogle Scholar
  42. 42.
    Afonso, L. C, T. M. Scharton, L. Q. Vieira, M. Wysocka, G. Trinchieri, and P. Scott. 1994. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263:235PubMedCrossRefGoogle Scholar
  43. 43.
    Kenney, R. T., D. L. Sacks, J. P. Sypek, L. Vilela, A. A. Gam, and K. Evans-Davis. 1999. Protective immunity using recombinant human IL-12 and alum as adjuvants in a primate model of cutaneous leishmaniasis. J. Immunol. 163:4481.PubMedGoogle Scholar
  44. 44.
    Campos-Neto, A., R. Porrozzi, K. Greeson, R. N. Coler, J. R. Webb, Y. A. Seiky, S. G. Reed, and G. Grimaldi, Jr. 2001. Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infect. Immun. 69:4103.PubMedCrossRefGoogle Scholar
  45. 45.
    Donnelly, J. J., J. B. Ulmer, J. W. Shiver, and M. A. Liu. 1997. DNA vaccines. Annu. Rev. Immunol. 15:617.PubMedCrossRefGoogle Scholar
  46. 46.
    Shedlock, D. J. and D. B. Weiner. 2000. DNA vaccination: antigen presentation and the induction of immunity. J. Leukoc. Biol. 68:793.PubMedGoogle Scholar
  47. 47.
    0liveira, S. C., G. M. Rosinha, C. F. de Brito, C. T. Fonseca, R. R. Afonso, M. C. Costa, A. M. Goes, E. L. Rech, and V Azevedo. 1999. Immunological properties of gene vaccines delivered by different routes. Braz. J. Med. Biol. Res. 32:207.PubMedGoogle Scholar
  48. 48.
    Feltquate, D. M., S. Heaney, R. G. Webster, and H. L. Robinson. 1997. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 158:2278.PubMedGoogle Scholar
  49. 49.
    Raz, E., H. Tighe, Y. Sato, M. Corr, J. A. Dudler, M. Roman, S. L. Swain, H. L. Spiegelberg, and D. A. Carson. 1996. Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc. Natl. Acad. Sci. U. S. A 93:5141.PubMedCrossRefGoogle Scholar
  50. 50.
    Pertmer, T. M., T. R. Roberts, and J. R. Haynes. 1996. Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J. Virol. 70:6119.PubMedGoogle Scholar
  51. 51.
    Asakura, Y., L. J. Liu, N. Shono, J. Hinkula, A. Kjerrstrom, I. Aoki, K. Okuda, B. Wahren, and J. Fukushima. 2000. Th1-biased immune responses induced by DNA-based immunizations are mediated via action on professional antigen-presenting cells to up-regulate IL-12 production. Clin. Exp. Immunol. 119:130.PubMedCrossRefGoogle Scholar
  52. 52.
    Kowalczyk, D. W. and H. C. Ertl. 1999. Immune responses to DNA vaccines. Cell Mol. Life Sci. 55:751.PubMedCrossRefGoogle Scholar
  53. 53.
    Alarcon, J. B., G. W. Waine, and D. P. McManus. 1999. DNA vaccines: technology and application as anti-parasite and anti-microbial agents. Adv. Parasitol. 42:343.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu, M. A., T. M. Fu, J. J. Donnelly, M. J. Caulfield, and J. B. Ulmer. 1998. DNA vaccines. Mechanisms for generation of immune responses. Adv. Exp. Med. Biol. 452:187.PubMedCrossRefGoogle Scholar
  55. 55.
    Wong, J. P., M. A. Zabielski, F. L. Schmaltz, G. G. Brownlee, L. A. Bussey, K. Marshall, T. Borralho, and L. P. Nagata. 2001. DNA vaccination against respiratory influenza virus infection. Vaccine 19:2461.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu, M. A., W. McClements, J. B. Ulmer, J. Shiver, and J. Donnelly. 1997. Immunization of non-human primates with DNA vaccines. Vaccine 15:909.PubMedCrossRefGoogle Scholar
  57. 57.
    Lodmell, D. L. and L. C. Ewalt. 2000. Rabies vaccination: comparison of neutralizing antibody responses after priming and boosting with different combinations of DNA, inactivated virus, or recombinant vaccinia virus vaccines. Vaccine 18:2394.PubMedCrossRefGoogle Scholar
  58. 58.
    Schultz, J., G. Dollenmaier, and K. Moiling. 2000. Update on antiviral DNA vaccine research (1998–2000). Intervirology 43:197.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim, J. J. and D. B. Weiner. 1999. Development of multicomponent DNA vaccination strategies against HIV. Curr. Opin. Mol. Ther. 1:43.PubMedGoogle Scholar
  60. 60.
    Letvin, N. L. 1998. Progress in the development of an HIV-1 vaccine. Science 280:1875.PubMedCrossRefGoogle Scholar
  61. 61.
    Coler, R. N., A. Campos-Neto, P. Ovendale, F. H. Day, S. P. Fling, L. Zhu, N. Serbina, J. L. Flynn, S. G. Reed, and M. R. Alderson. 2001. Vaccination with the T cell antigen Mtb 8.4 protects against challenge with Mycobacterium tuberculosis. J. Immunol. 166:6227.PubMedGoogle Scholar
  62. 62.
    Skeiky, Y. A., P. J. Ovendale, S. Jen, M. R. Alderson, D. C. Dillon, S. Smith, C. B. Wilson, I. M. Orme, S. G. Reed, and A. Campos-Neto. 2000. T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J. Immunol. 165:7140.PubMedGoogle Scholar
  63. 63.
    Lowrie, D. B., R. E. Tascon, V. L. Bonato, V. M. Lima, L. H. Faccioli, E. Stavropoulos, M. J. Colston, R. G. Hewinson, K. Moelling, and C. L. Silva. 1999. Therapy of tuberculosis in mice by DNA vaccination. Nature 400:269.PubMedCrossRefGoogle Scholar
  64. 64.
    Lai, W. C, S. P. Pakes, K. Ren, Y. S. Lu, and M. Bennett. 1997. Therapeutic effect of DNA immunization of genetically susceptible mice infected with virulent Mycoplasma pulmonis. J. Immunol. 158:2513.PubMedGoogle Scholar
  65. 65.
    Wang, R., J. Epstein, F. M. Baraceros, E. J. Gorak, Y. Charoenvit, D. J. Carucci, R. C. Hedstrom, N. Rahardjo, T. Gay, P. Hobart, R. Stout, T. R. Jones, T. L. Richie, S. E. Parker, D. L. Doolan, J. Norman, and S. L. Hoffman. 2001. Induction of CD4+ T cell-dependent CD8+ type 1 responses in humans by a malaria DNA vaccine. Proc. Natl. Acad. Sci. U. S. A.Google Scholar
  66. 66.
    Daubersies, P., A. W. Thomas, P. Millet, K. Brahimi, J. A. Langermans, B. Ollomo, L. BenMohamed, B. Slierendregt, W. Eling, A. Van Belkum, G. Dubreuil, J. F. Meis, C. Guerin-Marchand, S. Cayphas, J. Cohen, H. Gras-Masse, and P. Druilhe. 2000. Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nat. Med. 6:1258.PubMedCrossRefGoogle Scholar
  67. 67.
    Mendez, S., S. Gurunathan, S. Kamhawi, Y. Belkaid, M. A. Moga, Y. A. Skeiky, A. Campos-Neto, S. Reed, R. A. Seder, and D. Sacks. 2001. The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. J. Immunol. 166:5122.PubMedGoogle Scholar
  68. 68.
    Fragaki, K., I. Suffia, B. Ferrua, D. Rousseau, Y. Le Fichoux, and J. Kubar. 2001. Immunisation with DNA encoding Leishmania infantum protein papLe22 decreases the frequency of parasitemic episodes in infected hamsters. Vaccine 19:1701.PubMedCrossRefGoogle Scholar
  69. 69.
    Melby, P. C, G. B. Ogden, H. A. Flores, W. Zhao, C. Geldmacher, N. M. Biediger, S. K. Ahuja, J. Uranga, and M. Melendez. 2000. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect. Immun. 68:5595.PubMedCrossRefGoogle Scholar
  70. 70.
    Handman, E., A. H. Noormohammadi, J. M. Curtis, T. Baldwin, and A. Sjolander. 2000. Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine 18:3011.PubMedCrossRefGoogle Scholar
  71. 71.
    Piedrafita, D., D. Xu, D. Hunter, R. A. Harrison, and F. Y. Liew. 1999. Protective immune responses induced by vaccination with an expression genomic library of Leishmania major. J. Immunol. 163:1467.PubMedGoogle Scholar
  72. 72.
    Walker, P. S., T. Scharton-Kersten, E. D. Rowton, U. Hengge, A. Bouloc, M. C. Udey, and J. C. Vogel. 1998. Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Hum. Gene Ther. 9:1899.PubMedCrossRefGoogle Scholar
  73. 73.
    Gurunathan, S., D. L. Sacks, D. R. Brown, S. L. Reiner, H. Charest, N. Glaichenhaus, and R. A. Seder. 1997. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J. Exp. Med. 186:1137.PubMedCrossRefGoogle Scholar
  74. 74.
    Sepulveda, P., M. Hontebeyrie, P. Liegeard, A. Mascilli, and K. A. Norris. 2000. DNA-Based immunization with Trypanosoma cruzi complement regulatory protein elicits complement lytic antibodies and confers protection against Trypanosoma cruzi infection. Infect. Immun. 68:4986.PubMedCrossRefGoogle Scholar
  75. 75.
    Wizel, B., N. Garg, and R. L. Tarleton. 1998. Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infect. Immun. 66:5073.PubMedGoogle Scholar
  76. 76.
    Costa, F., G. Franchin, V. L. Pereira-Chioccola, M. Ribeirao, S. Schenkman, and M. M. Rodrigues. 1998. Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice. Vaccine 16:768.PubMedCrossRefGoogle Scholar
  77. 77.
    Gurunathan, S., C. Y. Wu, B. L. Freidag, and R. A. Seder. 2000. DNA vaccines: a key for inducing long-term cellular immunity. Curr. Opin. Immunol. 12:442.PubMedCrossRefGoogle Scholar
  78. 78.
    Stobie, L., S. Gurunathan, C. Prussin, D. L. Sacks, N. Glaichenhaus, C. Y. Wu, and R. A. Seder. 2000. The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc. Natl. Acad. Sci. U. S. A 97:8427.PubMedCrossRefGoogle Scholar
  79. 79.
    Barouch, D. H., S. Santra, J. E. Schmitz, M. J. Kuroda, T. M. Fu, W. Wagner, M. Bilska, A. Craiu, X. X. Zheng, G. R. Krivulka, K. Beaudry, M. A. Lifton, C. E. Nickerson, W. L. Trigona, K. Punt, D. C. Freed, L. Guan, S. Dubey, D. Casimiro, A. Simon, M. E. Davies, M. Chastain, T. B. Strom, R. S. Gelman, D. C. Montefiori, M. G. Lewis, E. A. Emini, J. W. Shiver, and N. L. Letvin. 2000. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290:486.PubMedCrossRefGoogle Scholar
  80. 80.
    Barouch, D. H., A. Craiu, M. J. Kuroda, J. E. Schmitz, X. X. Zheng, S. Santra, J. D. Frost, G. R. Krivulka, M. A. Lifton, C. L. Crabbs, G. Heidecker, H. C. Perry, M. E. Davies, H. Xie, C. E. Nickerson, T. D. Steenbeke, C. I. Lord, D. C. Montefiori, T. B. Strom, J. W. Shiver, M. G. Lewis, and N. L. Letvin. 2000. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proc. Natl. Acad. Sci. U. S. A 97:4192.PubMedCrossRefGoogle Scholar
  81. 81.
    Murphy, K. M. 1998. T lymphocyte differentiation in the periphery. Curr. Opin. Immunol. 10:226.PubMedCrossRefGoogle Scholar
  82. 82.
    Trinchieri, G. 1995. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13:251.PubMedCrossRefGoogle Scholar
  83. 83.
    Asnagli, H. and K. M. Murphy. 2001. Stability and commitment in T helper cell development. Curr. Opin. Immunol. 13:242.PubMedCrossRefGoogle Scholar
  84. 84.
    Constant, S. L. and K. Bottomly. 1997. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15:297.PubMedCrossRefGoogle Scholar
  85. 85.
    Mosmann, T. R. and S. Sad. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17:138.PubMedCrossRefGoogle Scholar
  86. 86.
    Biron, C. A. and Gazzinelli, R. T. 1995. Effects of IL-12 on immune responses to microbial infections: a key mediator in regulating disease outcomeCurr. Opin. Immunol. 7: 485–496.CrossRefGoogle Scholar
  87. 87.
    Kim, J. J., Nottingham, L. K., Tsai, A., Lee, D. J., Maguire, H. C., Oh, J., Dentchev, T., Manson, K. H., Wyand, M. S., Agadjanyan, M. G. Ugen KE, Weiner DB. 1999, Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-gamma, IL-12, or IL-18 gene adjuvants. J. Med. Primatol. 28: 214–223.PubMedCrossRefGoogle Scholar
  88. 88.
    Trinchieri, G. 1997 Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-gamma) Curr. Opin. Hematol. 4: 59–66.PubMedCrossRefGoogle Scholar
  89. 89.
    Krieg, A. M., A. K. Yi, and G. Hartmann. 1999. Mechanisms and therapeutic applications of immune stimulatory cpG DNA. Pharmacol. Ther. 84:113.PubMedCrossRefGoogle Scholar
  90. 90.
    Davis, H. L. 2000. Use of CpG DNA for enhancing specific immune responses. Curr. Top. Microbiol. Immunol. 247:171.PubMedCrossRefGoogle Scholar
  91. 92.
    Krieg, A. M. 2000. Immune effects and mechanisms of action of CpG motifs. Vaccine 19:618.PubMedCrossRefGoogle Scholar
  92. 93.
    McCluskie, M. J., R. D. Weeratna, P. J. Payette, and H. L. Davis. 2001. The use of CpG DNA as a mucosal vaccine adjuvant. Curr. Opin. Investig. Drugs 2:35.PubMedGoogle Scholar
  93. 94.
    Zimmermann, S., O. Egeter, S. Hausmann, G. B. Lipford, M. Rocken, H. Wagner, and K. Heeg. 1998. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160:3627.PubMedGoogle Scholar
  94. 95.
    Stacey, K. J. and J. M. Blackwell. 1999. Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major. Infect. Immun. 67:3719.PubMedGoogle Scholar
  95. 96.
    Walker, P. S., T. Scharton-Kersten, A. M. Krieg, L. Love-Homan, E. D. Rowton, M. C. Udey, and J. C. Vogel. 1999. Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma-dependent mechanisms. Proc. Natl. Acad. Sci. U. S. A 96:6970.PubMedCrossRefGoogle Scholar
  96. 97.
    Iho, S., T. Yamamoto, T. Takahashi, and S. Yamamoto. 1999. Oligodeoxynucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J. Immunol. 163:3642.PubMedGoogle Scholar
  97. 98.
    Deml, L., R. Schirmbeck, J. Reimann, H. Wolf, and R. Wagner. 1999. Immunostimulatory CpG motifs trigger a T helper-1 immune response to human immunodeficiency virus type-1 (HIV-1) gp 160 envelope proteins. Clin. Chem. Lab Med. 37:199.PubMedCrossRefGoogle Scholar
  98. 99.
    Sato, Y., M. Roman, H. Tighe, D. Lee, M. Corr, M. D. Nguyen, G. J. Silverman, M. Lotz, D. A. Carson, and E. Raz. 1996. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273:352.PubMedCrossRefGoogle Scholar
  99. 100.
    Vogel, F. R. and M. F. Powell. 1995. A compedium of vaccine adjuvants excipients. In Vaccine Design, The Subunit and Adjuvant Approach. Michael F.Powell and Mark J.Newman, eds. Plenum Press, New York and London, pp. 141–228.Google Scholar
  100. 101.
    Edelman, R. 1997. Adjuvants for the future. In New Genaration Vaccines. Myron M.Levine, Graeme C.Woodrow, James B.Kaper, and Gary S.Cobon, eds. Marcel Dekker, Inc., New York, Basel, Hong Kong, pp. 173–192.Google Scholar
  101. 102.
    Titus, R. G., F. J. Gueiros-Filho, L. A. de Freitas, and S. M. Beverley. 1995. Development of a safe live Leishmania vaccine line by gene replacement. Proc. Natl. Acad. Sci. U.S. A 92:10267.PubMedCrossRefGoogle Scholar
  102. 103.
    Veras, P., C. Brodskyn, F. Balestieri, L. Freitas, A. Ramos, A. Queiroz, A. Barral, S. Beverley, and M. Barral-Netto. 1999. A dhfr-ts- Leishmania major knockout mutant cross-protects against Leishmania amazonensis. Mem. Inst. Oswaldo Cruz 94:491.PubMedCrossRefGoogle Scholar
  103. 104.
    Belkaid, Y., S. Kamhawi, G. Modi, J. Valenzuela, N. Noben-Trauth, E. Rowton, J. Ribeiro, and D. L. Sacks. 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J. Exp. Med. 188:1941.PubMedCrossRefGoogle Scholar
  104. 105.
    Kamhawi, S., Y. Belkaid, G. Modi, E. Rowton, and D. Sacks. 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290:1351.PubMedCrossRefGoogle Scholar
  105. 106.
    Sacks, D. L. 2001. Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol. 3:189.PubMedCrossRefGoogle Scholar
  106. 107.
    Belkaid, Y., J. G. Valenzuela, S. Kamhawi, E. Rowton, D. L. Sacks, and J. M. Ribeiro. 2000. Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? Proc. Natl. Acad. Sci. U. S. A 97:6704.PubMedCrossRefGoogle Scholar
  107. 108.
    Valenzuela, J. G., Y. Belkaid, M. K. Garfield, S. Mendez, S. Kamhawi, E. D. Rowton, D. L. Sacks, and J. M. Ribeiro. 2001. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J. Exp. Med. 194:331.PubMedCrossRefGoogle Scholar
  108. 109.
    Aebischer, T., M. Wolfram, S. I. Patzer, T. Ilg, M. Wiese, and P. Overath. 2000. Subunit vaccination of mice against new world cutaneous leishmaniasis: comparison of three proteins expressed in amastigotes and six adjuvants. Infect. Immun. 68:1328.PubMedCrossRefGoogle Scholar
  109. 110.
    Webb, J. R., A. Campos-Neto, P. J. Ovendale, T. I. Martin, E. J. Stromberg, R. Badaro, and S. G. Reed. 1998. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect. Immun. 66:3279.PubMedGoogle Scholar
  110. 111.
    Soong, L., S. M. Duboise, P. Kima, and D. McMahon-Pratt. 1995. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect. Immun. 63:3559.PubMedGoogle Scholar
  111. 112.
    Scott, P. 1991. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J. Immunol. 147:3149.PubMedGoogle Scholar
  112. 113.
    Champsi, J. and D. McMahon-Pratt. 1988. Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infect. Immun. 56:3272.PubMedGoogle Scholar
  113. 114.
    Mougneau, E., F. Altare, A. E. Wakil, S. Zheng, T. Coppola, Z. E. Wang, R. Waldmann, R. M. Locksley, and N. Glaichenhaus. 1995. Expression cloning of a protective Leishmania antigen. Science 268:563.PubMedCrossRefGoogle Scholar
  114. 115.
    Campos-Neto, A., L. Soong, J. L. Cordova, D. Sant’Angelo, Y. A. Skeiky, N. H. Ruddle, S. G. Reed, C. Janeway, Jr., and D. McMahon-Pratt. 1995. Cloning and expression of a Leishmania donovani gene instructed by a peptide isolated from major histocompatibility complex class II molecules of infected macrophages. J. Exp. Med. 182:1423.PubMedCrossRefGoogle Scholar
  115. 116.
    Julia, V., M. Rassoulzadegan, and N. Glaichenhaus. 1996. Resistance to Leishmania major induced by tolerance to a single antigen. Science 274:421.PubMedCrossRefGoogle Scholar
  116. 117.
    Amaral, V., C. Pirmez, A. Goncalves, V. Ferreira, and G. Grimaldi, Jr. 2000. Cell populations in lesions of cutaneous leishmaniasis of Leishmania (L.) amazonensis. Mem. Inst. Oswaldo Cruz 95:209.PubMedCrossRefGoogle Scholar
  117. 118.
    Amaral, V. F., V. A. Ransatto, F. Conceicao-Silva, E. Molinaro, V. Ferreira, S. G. Coutinho, D. McMahon-Pratt, and G. Grimaldi, Jr. 1996. Leishmania amazonensis: the Asian rhesus macaques (Macaca mulatta) as an experimental model for study of cutaneous leishmaniasis. Exp. Parasitol. 82:34.PubMedCrossRefGoogle Scholar
  118. 119.
    Baba, T. W., V. Liska, R. Hofmann-Lehmann, J. Vlasak, W. Xu, S. Ayehunie, L. A. Cavacini, M. R. Posner, H. Katinger, G. Stiegler, B. J. Bernacky, T. A. Rizvi, R. Schmidt, L. R. Hill, M. E. Keeling, Y. Lu, J. E. Wright, T. C. Chou, and R. M. Ruprecht. 2000. Human neutralizing monoclonal antibodies of the IgGl subtype protect against mucosal simianhuman immunodeficiency virus infection. Nat. Med. 6:200.PubMedCrossRefGoogle Scholar
  119. 120.
    Githure, J. I., G. D. Reid, A. A. Binhazim, C. O. Anjili, A. M. Shatry, and L. D. Hendricks. 1987. Leishmania major: the suitability of East African nonhuman primates as animal models for cutaneous leishmaniasis. Exp. Parasitol. 64:438.PubMedCrossRefGoogle Scholar
  120. 121.
    Githure, J. L, A. M. Shatry, R. Tarara, J. D. Chulay, M. A. Suleman, C. N. Chunge, and J. G. Else. 1986. The suitability of East African primates as animal models of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 80:575.PubMedCrossRefGoogle Scholar
  121. 122.
    Walsh, G. P., E. V. Tan, E. C. dela Cruz, R. M. Abalos, L. G. Villahermosa, L. J. Young, R. V. Cellona, J. B. Nazareno, and M. A. Horwitz. 1996. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat. Med. 2:430.PubMedCrossRefGoogle Scholar
  122. 123.
    Ulrich, J. T. and Myers K.R. 1995. Monophosphoryl lypid A as an adjuvant. In Vaccine Design: The Subunit Adjuvant Aprroach. Michael F.Powell and Mark J.Newman, eds. Plenum Press, New York, pp. 495–524.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Antonio Campos-Neto
    • 1
  1. 1.Infectious Disease Research InstituteSeattleUSA

Personalised recommendations