Skip to main content

The Immunology of Visceral Leishmaniasis: Current Status

  • Chapter
Leishmania

Part of the book series: World Class Parasites ((WCPA,volume 4))

Abstract

The human impact of visceral leishmaniasis is significant. Some 500,000 new cases are reported annually, and epidemics may decimate local populations. A more complete understanding of the human immune response and its pathological consequences are needed for the design of vaccines and for improvements in therapy. This will require more thorough clinical investigation, and also a better appreciation of the usefulness and limitations of animal models. This review will concentrate on recent observations on patients with active VL. It will summarize recent progress in studies using a murine model that may have most bearing on human disease. Finally, it discusses future research directions aimed at elucidating the pathogenesis of VL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, R., Chiodini, P., and Kaye, P. M. 1999. Leishmaniasis. In Geraint James, D. and Zumla, A., eds., The Granulomatous Disorders, p. 212–234. Cambridge University Press, Cambridge.

    Google Scholar 

  2. Sacks, D. L., Lai, S. L., Shrivastava, S. N., Blackwell, J., and Neva, F. A. 1987. An analysis of T cell responsiveness in Indian kala-azar. J Immunol 138:908–13.

    PubMed  CAS  Google Scholar 

  3. Thakur, C. P. Epidemiological, clinical and therapeutic features of Bihar kala-azar (including post kala-azar dermal leishmaniasis).

    Google Scholar 

  4. Zijlstra, E. E. and el-Hassan, A. M. 2001. Leishmaniasis in Sudan. Visceral leishmaniasis. Trans R Soc Trop Med Hyg 95 Suppl LS27–58.

    Article  Google Scholar 

  5. Babaloo, Z., Kaye, P. M., and Eslami, M. B. 2001. Interleukin-13 in Iranian patients with visceral leishmaniasis: relationship to other Th2 and Th1 cytokines. Trans R Soc Trop Med Hyg 95:85–8.

    Article  PubMed  CAS  Google Scholar 

  6. Bryceson, A. D. M. 1996. Manson’s Tropical Diseases, 20 edn. W.B. Saunders Ltd., London.

    Google Scholar 

  7. Cillari, E., Vitale, G., Arcoleo, F., D’Agostino, P., Mocciaro, C., Gambino, G., Malta, R, Stassi, G., Giordano, C, Milano, S., and et al. 1995. In vivo and in vitro cytokine profiles and mononuclear cell subsets in Sicilian patients with active visceral leishmaniasis. Cytokine 7:740–5.

    Article  PubMed  CAS  Google Scholar 

  8. Reed, S. G. and Scott, P. 1993. T-cell and cytokine responses in leishmaniasis. Curr Opin Immunol 5:524–31.

    Article  PubMed  CAS  Google Scholar 

  9. Sundar, S., Reed, S. G., Sharma, S., Mehrotra, A., and Murray, H. W. 1997. Circulating T helper 1 (Th1) cell- and Th2 cell-associated cytokines in Indian patients with visceral leishmaniasis. Am J Trop Med Hyg 56:522–5.

    PubMed  CAS  Google Scholar 

  10. Ghalib, H. W., Whittle, J. A., Kubin, M., Hashim, F. A., el-Hassan, A. M., Grabstein, K. H., Trinchieri, G., and Reed, S. G. 1995. IL-12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol 154:4623–9.

    PubMed  CAS  Google Scholar 

  11. Karp, C. L., el-Safi, S. H, Wynn, T. A., Satti, M. M., Kordofani, A. M., Hashim, F. A., Hag-Ali, M., Neva, F. A., Nutman, T. B., and Sacks, D. L. 1993. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin_10 and interferon-gamma [see comments]. J Clin Invest 91:1644–8.

    Article  PubMed  CAS  Google Scholar 

  12. Kenney, R. T., Sacks, D. L., Gam, A. A., Murray, H. W., and Sundar, S. 1998. Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 177:815–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kemp, K., Kemp, M., Kharazmi, A., Ismail, A., Kurtzhals, J. A., Hviid, L., and Theander, T. G. 1999. Leishmanta-specific T cells expressing interferon-gamma (IFN-gamma) and IL_10 upon activation are expanded in individuals cured of visceral leishmaniasis. Clin Exp Immunol 116:500–4.

    Article  PubMed  CAS  Google Scholar 

  14. Gasim, S., Elhassan, A. M., Khalil, E. A., Ismail, A., Kadaru, A. M., Kharazmi, A., and Theander, T. G. 1998. High levels of plasma IL_10 and expression of IL_10 by keratinocytes during visceral leishmaniasis predict subsequent development of post-kala-azar dermal leishmaniasis. Clin Exp Immunol 111:64–9.

    Article  PubMed  CAS  Google Scholar 

  15. Bradley, D. J., Taylor, B. A., Blackwell, J, Evans, E. P, and Freeman, J. 1979. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol 37:7–14.

    PubMed  CAS  Google Scholar 

  16. Vidal, S., Tremblay, M. L., Govoni, G., Gauthier, S., Sebastiani, G., Malo, D., Skamene, E., Olivier, M., Jothy, S., and Gros, P. 1995. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–66.

    Article  PubMed  CAS  Google Scholar 

  17. Blackwell, J., Goswami, T., Evans, C. A. W., Sibthorpe, D., Papo, N., White, J. K., Searle, S., Miller, E. N., Peacock, C. S., Mohammed, H., and Ibrahim, M. 2001. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol 3:in press.

    Google Scholar 

  18. Gruenheid, S., Pinner, E., Desjardins, M., and Gros, P. 1997. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–30.

    Article  PubMed  CAS  Google Scholar 

  19. Vidal, S. M., Pinner, E., Lepage, P., Gauthier, S., and Gros, P. 1996. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J Immunol 157:3559–68.

    PubMed  CAS  Google Scholar 

  20. Shaw, M. A., Clayton, D., Atkinson, S. E., Williams, H, Miller, N., Sibthorpe, D., and Blackwell, J. M. 1996. Linkage of rheumatoid arthritis to the candidate gene NRAMP1 on 2q35. J Med Genet 33:672–7.

    Article  PubMed  CAS  Google Scholar 

  21. Sanjeevi, C. B., Miller, E. N., Dabadghao, P., Rumba, I., Shtauvere, A., Denisova, A., Clayton, D., and Blackwell, J. M. 2000. Polymorphism at NRAMP1 and D2S1471 loci associated with juvenile rheumatoid arthritis. Arthritis Rheum 43:1397–404.

    Article  PubMed  CAS  Google Scholar 

  22. Gao, P. S., Fujishima, S., Mao, X. Q., Remus, N., Kanda, M., Enomoto, T., Dake, Y., Bottini, N., Tabuchi, M., Hasegawa, N., Yamaguchi, K., Tiemessen, C, Hopkin, J. M., Shirakawa, T., and Kishi, F. 2000. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clin Genet 58:74–6.

    Article  PubMed  CAS  Google Scholar 

  23. Bellamy, R., Ruwende, C., Corrah, T., McAdam, K. P., Whittle, H. C., and Hill, A. V. 1998. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338:640–4.

    Article  PubMed  CAS  Google Scholar 

  24. Peacock, C. S., Collins, A., Shaw, M. A., Silveira, F., Costa, J., Coste, C. H., Nascimento, M. D., Siddiqui, R., Shaw, J. J., and Blackwell, J. M. 2001. Genetic epidemiology of visceral leishmaniasis in northeastern Brazil. Genet Epidemiol 20:383–96.

    Article  PubMed  CAS  Google Scholar 

  25. Blackwell, J. M. Leishmania donovani infection in heterozygous and recombinant H-2 haplotype mice.

    Google Scholar 

  26. Cabrera, M., Shaw, M. A., Sharpies, C, Williams, H., Castes, M., Convit, J., and Blackwell, J. M. 1995. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med 182:1259–64.

    Article  PubMed  CAS  Google Scholar 

  27. Meddeb-Garnaoui, A., Gritli, S., Garbouj, S., Ben Fadhel, M., El Kares, R., Mansour, L., Kaabi, B., Chouchane, L., Ben Salah, A., and Dellagi, K. 2001. Association analysis of HLA-class II and class III gene polymorphisms in the susceptibility to mediterranean visceral leishmaniasis. Hum Immunol 62:509–17.

    Article  PubMed  CAS  Google Scholar 

  28. Faghiri, Z., Tabei, S. Z., and Taheri, F. 1995. Study of the association of HLA class I antigens with kala-azar. Hum Hered 45:258–61.

    Article  PubMed  CAS  Google Scholar 

  29. Singh, N., Sundar, S., Williams, F., Curran, M. D., Rastogi, A., Agrawal, S., and Middleton, D. 1997. Molecular typing of HLA class I and class II antigens in Indian kala-azar patients. Trop Med Int Health 2:468–71.

    Article  PubMed  CAS  Google Scholar 

  30. Tumang, M. C., Keogh, C., Moldawer, L. L., Helfgott, D. C., Teitelbaum, R., Hariprashad, J., and Murray, H. W. 1994. Role and effect of TNF-alpha in experimental visceral leishmaniasis. J Immunol 153:768–75.

    PubMed  CAS  Google Scholar 

  31. Murray, H. W., Jungbluth, A., Ritter, E., Montelibano, C., and Marino, M. W. 2000. Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect Immun 68:6289–93.

    Article  PubMed  CAS  Google Scholar 

  32. Gardnerova, M., Blanque, R., and Gardner, C. R. 2000. The use of TNF family ligands and receptors and agents which modify their interaction as therapeutic agents. Curr Drug Targets 1:327–64.

    Article  PubMed  CAS  Google Scholar 

  33. Ridley, D. S. A histological classification of cutaneous leishmaniasis and its geographical expression.

    Google Scholar 

  34. Pampiglione, S., Manson-Bahr, P. E., Giungi, F., Giunti, G., Parenti, A., and Canestri Trotti, G. Studies on Mediterranean leishmaniasis. 2. Asymptomatic cases of visceral leishmaniasis.

    Google Scholar 

  35. Daneshbod, K. 1972. Visceral leishmaniasis (kala-azar) in Iran: a pathologic and electron microscopic study. Am J Clin Pathol 57:156–66.

    PubMed  CAS  Google Scholar 

  36. Alexander, C. E., Kaye, P. M., and Engwerda, C. R. 2001. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. Eur J Immunol 31:1199–210.

    Article  PubMed  CAS  Google Scholar 

  37. Kanaly, S. T., Nashleanas, M., Hondowicz, B., and Scott, P. 1999. TNF receptor p55 is required for elimination of inflammatory cells following control of intracellular pathogens. J Immunol 163:3883–9.

    PubMed  CAS  Google Scholar 

  38. Gasim, S., Elhassan, A. M., Kharazmi, A., Khalil, E. A., Ismail, A., and Theander, T. G. 2000. The development of post-kala-azar dermal leishmaniasis (PKDL) is associated with acquisition of Leishmania reactivity by peripheral blood mononuclear cells (PBMC). Clin Exp Immunol 119:523–9.

    Article  PubMed  CAS  Google Scholar 

  39. Dye, C. and Williams, B. G. 1993. Malnutrition, age and the risk of parasitic disease: visceral leishmaniasis revisited. Proc R Soc Lond B Biol Sci 254:33–9.

    Article  CAS  Google Scholar 

  40. Pintado, V., Martin-Rabadan, P., Rivera, M. L., Moreno, S., and Bouza, E. 2001. Visceral leishmaniasis in human immunodeficiency virus (KV)-infected and non-HIV-infected patients. A comparative study. Medicine (Baltimore) 80:54–73.

    Article  CAS  Google Scholar 

  41. Anstead, G. M., Chandrasekar, B., Zhao, W., Yang, J., Perez, L. E., and Melby, P. C. 2001. Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 69:4709–18.

    Article  PubMed  CAS  Google Scholar 

  42. Streit, J. A., Recker, T. J., Filho, F. G., Beverley, S. M., and Wilson, M. E. 2001. Protective immunity against the protozoan Leishmania chagasi is induced by subclinical cutaneous infection with virulent but not avirulent organisms. J Immunol 166:1921–9.

    PubMed  CAS  Google Scholar 

  43. Murray, H. W. 1999. Granulomatous inflammation: Host antimicrobial defense in the tissues in visceral leishmaniasis. In Gallin, J. I. and Snyderman, R., eds., Inflammation: basic principles and clinical correlates., p. 977–994. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  44. Cotterell, S. E., Engwerda, C. R., and Kaye, P. M. 1999. Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. Eur J Immunol 29:203–14.

    Article  PubMed  CAS  Google Scholar 

  45. Sato, N., Kuziel, W. A., Melby, P. C., Reddick, R. L., Kostecki, V., Zhao, W., Maeda, N., Ahuja, S. K., and Ahuja, S. S. 1999. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J Immunol 163:5519–25.

    PubMed  CAS  Google Scholar 

  46. Crispe, I. N. and Mehal, W. Z. 1996. Strange brew: T cells in the liver. Immunol Today 17:522–5.

    Article  PubMed  CAS  Google Scholar 

  47. Trobonjaca, Z., Leithauser, F., Moller, P., Schirmbeck, R., and Reimann, J. 2001. Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells. J Immunol 167:1413–22.

    PubMed  CAS  Google Scholar 

  48. Knolle, P. A. and Limmer, A. 2001. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol 22:432–7.

    Article  PubMed  CAS  Google Scholar 

  49. Engwerda, C. R. and Kaye, P. M. 2000. Organ-specific immune responses associated with infectious disease. Immunol Today 21:73–8.

    Article  PubMed  CAS  Google Scholar 

  50. Smelt, S. C, Cotterell, S. E., Engwerda, C. R., and Kaye, P. M. 2000. B cell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology. J Immunol 164:3681–8.

    PubMed  CAS  Google Scholar 

  51. Rousseau, D., Demartino, S., Ferrua, B., Francois Michiels, J., Anjuere, F., Fragaki, K., Le Fichoux, Y., and Kubar, J. In vivo involvement of polymorphonuclear neutrophils in Leishmania infantum infection.

    Google Scholar 

  52. Murray, H. W. and Nathan, C. F. 1999. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–6.

    Article  PubMed  CAS  Google Scholar 

  53. Nakano, H., Yanagita, M., and Gunn, M. D. 2001. Cdllc(+)b220(+)gr-l(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194:1171–8.

    Article  PubMed  CAS  Google Scholar 

  54. Murphy, M. L., Wille, U., Villegas, E. N., Hunter, C. A., and Farrell, J. P. 2001. IL_10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31:2848–56.

    Article  PubMed  CAS  Google Scholar 

  55. Alexander, J., Satoskar, A. R., and Russell, D. G. 1999. Leishmania species: models of intracellular parasitism. J Cell Sci 112 Pt 18:2993–3002.

    Google Scholar 

  56. Alexander, J., Carter, K. C., Al-Fasi, N., Satoskar, A., and Brombacher, F. 2000. Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol 30:2935–43.

    Article  PubMed  CAS  Google Scholar 

  57. Satoskar, A., Bluethmann, H., and Alexander, J. 1995. Disruption of the murine interleukin-4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infect Immun 63:4894–9.

    PubMed  CAS  Google Scholar 

  58. Stager, S., Smith, D. F., and Kaye, P. M. 2000. Immunization with a recombinant stageregulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 165:7064–71.

    PubMed  CAS  Google Scholar 

  59. Murphy, M. L., Cotterell, S. E., Gorak, P. M., Engwerda, C. R., and Kaye, P. M. 1998. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J Immunol 161:4153–60.

    PubMed  CAS  Google Scholar 

  60. Gomes, N. A. and DosReis, G. A. 2001. The dual role of CTLA-4 in Leishmania infection. Trends in Parasitology 17:487–491.

    Article  PubMed  CAS  Google Scholar 

  61. Sullivan, T. J., Letterio, J. J., van Elsas, A., Mamura, M., van Ameisfort, J., Sharpe, S., Metzler, B., Chambers, C. A., and Allison, J. P. 2001. Lack of a role for transforming growth factor-beta in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc Natl Acad Sci U S A 98:2587–92.

    Article  PubMed  CAS  Google Scholar 

  62. Wilson, M. E., Young, B. M., Davidson, B. L., Mente, K. A., and McGowan, S. E. 1998. The importance of TGF-beta in murine visceral leishmaniasis. J Immunol 161:6148–55.

    PubMed  CAS  Google Scholar 

  63. Gorak, P. M., Engwerda, C. R., and Kaye, P. M. 1998. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur J Immunol 28:687–95.

    Article  PubMed  CAS  Google Scholar 

  64. Cotterell, S. E., Engwerda, C. R., and Kaye, P. M. 2000. Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect Immun 68:1840–8.

    Article  PubMed  CAS  Google Scholar 

  65. Reis e Sousa, C, Sher, A., and Kaye, P. 1999. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr Opin Immunol 11:392–9.

    Article  PubMed  CAS  Google Scholar 

  66. Bennett, C. L., Misslitz, A., Colledge, L., Aebischer, T., and Blackburn, C. C. 2001. Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur J Immunol 31:876–83.

    Article  PubMed  CAS  Google Scholar 

  67. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G., and Cyster, J. G. 2000. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci U S A 97:12694–9.

    Article  PubMed  CAS  Google Scholar 

  68. Launois, P., Ohteki, T., Swihart, K., MacDonald, H. R., and Louis, J. A. 1995. In susceptible mice, Leishmania major induce very rapid interleukin-4 production by CD4+ T cells which are NK1.1. Eur J Immunol 25:3298–307.

    Article  PubMed  CAS  Google Scholar 

  69. Engwerda, C. R., Murphy, M. L., Cotterell, S. E., Smelt, S. C., and Kaye, P. M. 1998. Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur J Immunol 28:669–80.

    Article  PubMed  CAS  Google Scholar 

  70. Wilson, M. E., Sandor, M., Blum, A. M., Young, B. M., Metwali, A., Elliott, D., Lynch, R. G., and Weinstock, J. V. 1996. Local suppression of IFN-gamma in hepatic granulomas correlates with tissue-specific replication of Leishmania chagasi. J Immunol 156:2231–9.

    PubMed  CAS  Google Scholar 

  71. Smelt, S. C., Engwerda, C. R., McCrossen, M., and Kaye, P. M. 1997. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol 158:3813–21.

    PubMed  CAS  Google Scholar 

  72. Cotterell, S. E., Engwerda, C. R., and Kaye, P. M. 2000. Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-alpha. Blood 95:1642–51.

    PubMed  CAS  Google Scholar 

  73. Das, G., Vohra, R., Saha, B., Agrewala, J. N., and Mishra, G. C. Leishmania donovani infection of a susceptible host results in apoptosis of Th1-like cells: rescue of anti-leishmanial CMI by providing Th1-specific bystander costimulation.

    Google Scholar 

  74. Das, G., Vohra, H., Rao, K., Saha, B., and Mishra, G. C. 1999. Leishmania donovani infection of a susceptible host results in CD4+ T- cell apoptosis and decreased Th1 cytokine production. Scand J Immunol 49:307–10.

    Article  PubMed  CAS  Google Scholar 

  75. Gomes, N. A., Barreto-de-Souza, V., Wilson, M. E., and DosReis, G. A. 1998. Unresponsive CD4+ T lymphocytes from Leishmania chagasi-infected mice increase cytokine production and mediate parasite killing after blockade of B7-1/CTLA-4 molecular pathway. J Infect Dis 178:1847–51.

    Article  PubMed  CAS  Google Scholar 

  76. Melby, P. C., Chandrasekar, B., Zhao, W., and Coe, J. E. 2001. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166:1912–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaye, P.M. (2002). The Immunology of Visceral Leishmaniasis: Current Status. In: Farrell, J.P. (eds) Leishmania. World Class Parasites, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0955-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0955-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5322-5

  • Online ISBN: 978-1-4615-0955-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics