The Conformation of Tetrahydro-Biopterin Free and Bound to Aromatic Amino Acid Hydroxylases and NOS

  • Knut Teigen
  • Khanh K. Dao
  • Nils Åge Frøystein
  • Antonius C. F. Gorren
  • Bernd Mayer
  • Jeffrey McKinney
  • Jan Haavik
  • Aurora Martínez

Abstract

Phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH) and nitric oxide synthase (NOS) are tetrahydrobiopterin (BH4)-dependent enzymes that catalyze the hydroxylation of the respective aromatic amino acids (PAH, TH and TPH) and the synthesis of NO from arginine (NOS), using dioxygen as additional substrate. While the aromatic amino acid hydroxylases all contain a catalytic mononuclear non-heme iron which is essential for the hydroxylation, NOS contains a cytochrome P450-type heme in the oxygenase domain where NO synthesis seems to take place. We have recently studied the structure of the complex of BH2 (the oxidized analogue of BH4) and substrate with PAH by NMR and docking 1 and, in order to get further insights on the role of the iron and tetrahydropterin cofactor in the catalytic mechanism in these enzymes, we have extended these studies to BH4. Based on the distance constraints obtained by NMR complemented by distance geometry calculations, docking into the crystal structure of the enzymes and molecular dynamic simulations, we have determined the conformation of BH4 bound to each of the four enzymes.

Keywords

Nickel Hydroxyl Tyrosine Arginine Folate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Teigen K., Frøystein N.Å., Martínez A. The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism. J. Mol. Biol. 294: 807–823, 1999PubMedCrossRefGoogle Scholar
  2. 2.
    Haavik J., Le Bourdellès B., Martínez A., Flatmark T., Mallet J. Recombinant human tyrosine hydroxylase isozymes. Reconstitution with iron and inhibitory effect of other metal ions. Eur. J. Biochem. 199: 371–378, 1991PubMedCrossRefGoogle Scholar
  3. 3.
    Martínez A., Knappskog P.M., Olafsdottir S., Døskeland A.P., Eiken H.G., Svebak R. M., Bozzini M., Apold J., Flatmark T. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem. J. 306: 589–597, 1995PubMedGoogle Scholar
  4. 4.
    Harteneck C., Klatt P., Schmidt K., Mayer B. Expression of rat brain nitric oxide synthase in baculovirus-infected insect cells and characterization of the purified enzyme. Biochem. J. 304: 683–686, 1994PubMedGoogle Scholar
  5. 5.
    Huang Y., Ackers G.K. Enthalpie and entropie components of cooperativity for the partially ligated intermediates of hemoglobin support a “symmetry rule” mechanism. Biochemistry 34: 6316–6327, 1995PubMedCrossRefGoogle Scholar
  6. 6.
    Liu M., Mao X., Ye C, Huang H., Nicholson J. K., Lindon J. C. Improved WATERGATE pulse sequences for solvent supression in NMR spectroscopy. J. Magn. Res. 132: 125–129, 1998CrossRefGoogle Scholar
  7. 7.
    Estelberger W., Mlekusch W., Reibnegger G. The conformational flexibility of 5,6,7,8-tetrahydrobiopterin and 5,6,7,8-tetrahydroneopterin: a molecular dynamical simulation. FEBS Lett. 357: 37–40, 1995PubMedCrossRefGoogle Scholar
  8. 8.
    Ziegler I., Borchert M., Heaney F., Davis A.P., Boyle P. H. Structural requirements for the modulatory effect of 6-substituted pterins on interleukin 2 receptor binding. Biochim. Biophys. Acta. 1135: 330–334, 1992PubMedCrossRefGoogle Scholar
  9. 9.
    Katoh S., Sueoka T., Kurihara T. Theoretical Stereostructure of the neutral form of natural tetrahydrobiopterin. Pteridines 4: 27–31, 1993Google Scholar
  10. 10.
    Martinez A., Dao K. K., Mc.Kinney J., Teigen K. Froystein NA The conformation of 5,6,7,8-tetrahydrobiopterin and 7,8-dihydrobiopterin in solution: a NMR study. Pteridines. 11: 32–33, 2000Google Scholar
  11. 11.
    Matsuura S., Sugimoto T., Murata S., Sugawara Y., Iwasaki H. Stereochemistry of biopterin cofactor and facile methods for the determination of the stereochemistry of a biologically active 5,6,7,8- tetrahydropterin. J. Biochem. 98: 1341–1348, 1985PubMedGoogle Scholar
  12. 12.
    Armarego W.L., Randies D., Taguchi H. Peroxidase catalysed aerobic degradation of 5,6,7,8-tetrahydrobiopterin at physiological pH, Eur. J. Biochem. 135: 393–403, 1983PubMedCrossRefGoogle Scholar
  13. 13.
    Goodwill K.E., Sabatier C., Marks C., Raag R., Fitzpatrick P.F., Stevens R.C. Crystal structure of tyrosine hydroxylase at 2.3 A and its implications for inherited neurodegenerative diseases. Nat. Struct. Biol. 4: 578–585, 1997PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Knut Teigen
    • 1
  • Khanh K. Dao
    • 1
  • Nils Åge Frøystein
    • 2
  • Antonius C. F. Gorren
    • 3
  • Bernd Mayer
    • 3
  • Jeffrey McKinney
    • 1
  • Jan Haavik
    • 1
  • Aurora Martínez
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of BergenNorway
  2. 2.Department of ChemistryUniversity of BergenNorway
  3. 3.Department of Pharmacology and ToxicologyKarl-Franzens-University GrazAustria

Personalised recommendations