Skip to main content

The Role of DNA Damage in Melanogenesis: Potential Role for Telomeres

  • Chapter
Biologic Effects of Light 2001

Abstract

Perhaps the best-studied and most widely recognized inducer of melanogenesis (tanning) in human skin is solar ultraviolet (UV) radiation. Although the regulation of melanogenesis is incompletely understood, evidence suggests that UV-induced DNA is at least one of the initial signals that stimulates melanogenesis in response to UV irradiation1. First, the action spectrum for the tanning response in human skin is essentially the same as that for the induction of the major DNA photoproducts2,3. Second, enhancing DNA repair by treatment of UV-irradiated melanocyte cells with the prokaryotic DNA repair enzyme T4 endonuclease V approximately doubles the melanin content of these cells over a 4 day period as compared with irradiated cells treated with either heat- inactivated enzyme or diluent alone4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilchrest, B.A., and Eller, M. S. DNA photodamage stimulates melanogenesis and other photoprotective responses. J Investig Dermatol Symp Proc 1999; 4: 35–40.

    Article  PubMed  CAS  Google Scholar 

  2. Parrish, J.A., Jaenicke, K.F., Anderson, R.R. Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 1982; 36: 187–91.

    Article  PubMed  CAS  Google Scholar 

  3. Freeman, S.E., Hacham, H., Gange, RW., et al. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl AcadSci USA 1989; 86; 5605–9.

    Article  CAS  Google Scholar 

  4. Gilchrest, B.A., Zhai, S., Eller, M.S., et al. Treatment of human melanocytes and S91 melanoma cells with the DNA repair enzyme T4 endonuclease V enhances melanogenesis after ultraviolet irradiation. J Invest Dermatol 1993; 101: 666–72.

    Article  PubMed  CAS  Google Scholar 

  5. Eller, M.S., Ostrom, K., Gilchrest, B.A. DNA damage enhances melanogenesis. Proc Natl AcadSci USA, 1996; 93:1087–1092.

    Article  CAS  Google Scholar 

  6. Hadley, M.E., Levine, N. Pigmentation and Pigmentary Disorders, ed. Levine, N. CRC, Boca Raton, FL 1993:95–114.

    Google Scholar 

  7. Fuller, B.B., Lunsford, J.B., Iman D.S., et al. Alpha-melanocyte-stimulating hormone regulation of tyrosinase in Cloudman S-91 mouse melanoma cell cultures. J Biol Chem. 1987; 262: 4024–4033.

    PubMed  CAS  Google Scholar 

  8. Donatien, P.D., Hunt, G., Pieron, C. The expression of functional MSH receptors on cultured human melanocytes. Arch Dermatol Res. 1992; 284:424–426.

    Article  PubMed  CAS  Google Scholar 

  9. Bolognia, J., Murray, M., Pawelek, J. UVB-induced melanogenesis may be mediated through the MSH-receptor system. J Invest Dermatol 1989; 92: 651–656.

    Article  PubMed  CAS  Google Scholar 

  10. Eller, M.S., Yaar, M., Gilchrest, B.A. DNA damage and melanogenesis. Nature 1994; 372: 413–414.

    Article  PubMed  CAS  Google Scholar 

  11. Hadshiew, I.M., Eller, M.S., Gasparro, F.P., Gilchrest, B.A. Stimulation of melanogenesis by DNA oligonucleotides: effect of size, sequence and 5’ phosphorylation. J Dermatol Sci 2001; 25: 127–138.

    Article  PubMed  CAS  Google Scholar 

  12. Pedeux,R, Al-Irani, N., Mateau, C., et al. Thymidine dinucleotides induce S phase cell cycle arrest in addition to increased melanogenesis in human melanocytes. J Invest Dermatol 1998; 111:472–477.

    Article  PubMed  CAS  Google Scholar 

  13. Eller, M.S., Maeda, T., Magnoni, C., et al. Enhancement of DNA repair in human skin cells by thymidine dinucleotides: Evidence for a p53-mediated mammalian SOS response. Proc Natl Acad Sci USA 1997; 94:12627–12632.

    Article  PubMed  CAS  Google Scholar 

  14. Maeda, T, Eller, MS, Hedayati, M, et al. Enhanced repair of benzo(a)pyrene-induced DNA damage in human cells treated with thymidine dinucleotides. Mutat Res 1999; 433:137–145.

    Article  PubMed  CAS  Google Scholar 

  15. Cruz, P.D Jr, Leverkus, M., Dougherty, I., et al. Thymidine dinucleotides inhibit contact hypersensitivity and activate the gene for tumor necrosis factor a. J Invest Dermatol 2000; 114:253–258.

    Article  PubMed  CAS  Google Scholar 

  16. Khlgatian, M., Asawanonda, P., Eller, M.S. et al.Tyrosinase expression is regulated by p53. J Invest Dermatol 1999; 112: 548.

    Google Scholar 

  17. Khlgatian, M.K., Hadshiew, I.M., Asawanonda, P. et al.Tyrosianse gene expression is regulated by p53. J Invest Dermatol, (In press).

    Google Scholar 

  18. Eller, M.S. Hadshiew I.M., Puri N. et al. The single-stranded telomeric DNA induces DNA damage responses. J Invest Dermatol 2000; 114:756.

    Google Scholar 

  19. Campisi, J. Replicative senescence: an old lives tale? Cell 1996; 84:497–500.

    Article  PubMed  CAS  Google Scholar 

  20. Greider, C.W. Telomere length regulation. Annu Rev Biochem 1996; 65:337–365.

    Article  PubMed  CAS  Google Scholar 

  21. Feng, J., Funk, W.D., Wang, S.S., et al. The RNA component of human telomerase. Science 1995; 269:1236–1241.

    Article  PubMed  CAS  Google Scholar 

  22. Harrington, L., McPhail, T., Mar, V., et al. A mammalian telomerase-associated protein. Science 1997; 275:973–977.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura, T.M., Morin, G.B., Chapman, K.B., et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277:955–957.

    Article  PubMed  CAS  Google Scholar 

  24. de Lange, T. Telomeres and senescence: ending the debate. Science 1998; 279:334–335.

    Article  PubMed  Google Scholar 

  25. Dimri, G.P., Itahana, K., Acosta, M., Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and pl4ARF tumor suppressor. Mol Cell Biol 2000; 20:273–285.

    Article  PubMed  CAS  Google Scholar 

  26. Atadja, P., Wong, H., Garkavtsev, I. Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 1995; 92: 8348–8352.

    Article  PubMed  CAS  Google Scholar 

  27. Campisi, J., Dimri, G.P., Hara, E. Control of replicative senescence, In E. Scneider and J Rowe (ed.) Handbook of the biology of aging, 4th ed. Academic Press, New York, NY. 1996; 121–149.

    Google Scholar 

  28. DiLeonardo, A., Linke, S.P., Clarkin, K., Wahl, G.M. DNA damage triggers a prolonged p53-dependent GI arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev. 1994; 8: 2540–2551.

    Article  CAS  Google Scholar 

  29. Griffith, J.D. Comeau, L., Rosenfeld, S., et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97:503–514.

    Article  PubMed  CAS  Google Scholar 

  30. van Steensel, B., Smogorewska, A., de Lange, T. TRF2 protects telomeres from end-to-end fusions. Cell 1998; 92:401–413.

    Article  PubMed  Google Scholar 

  31. Karlseder J., Broccoli D., Dai Y., et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283:1321–1325.

    Article  PubMed  CAS  Google Scholar 

  32. Blackburn, E. Telomere states and cell fates. Nature 2000; 408: 53–56.

    Article  PubMed  CAS  Google Scholar 

  33. Baumann, P., Cech, T.R. Potl the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292: 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  34. Haddad, M.M., Xu, W., Schwahn, D.J., Liao, F., et al. Activation of a cAMP pathway and induction of melanogenesis correlate with association of pl6(INK4) and p27(KIPl) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. Exp Cell Res 1999; 253: 561–72.

    Article  PubMed  CAS  Google Scholar 

  35. Chen, Q.M., Bartholomew, J.C., Campisi, J., et al. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control Gl arrest but not cell replication. Biochem J 1998; 332: 43–50.

    PubMed  CAS  Google Scholar 

  36. Serrano, M., Lin, A.W., McCurrach, M.E., et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and pl6INK4a. Cell 1997; 88: 593–602.

    Article  PubMed  CAS  Google Scholar 

  37. Zhu, J., Woods, D., McMahon, M., Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 1998; 12: 2997–3007.

    Article  PubMed  CAS  Google Scholar 

  38. Stein, G.H., Drullinger, L.F., Soulard, A. and Dulic, V. Differential roles for cyclin-dependent kinase inhibitors p21 and pi 6 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 1999; 19: 2109–2117.

    PubMed  CAS  Google Scholar 

  39. Dimri, G.P., Lee, X., Basile, G., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Previously designated pTpT; in the oligonucleotide designation used here, “p” refers to a 5’ phosphate group; all other bases are joined by phosphodiester linkages.

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eller, M.S., Hadshiew, I.M., Gilchrest, B.A. (2002). The Role of DNA Damage in Melanogenesis: Potential Role for Telomeres. In: Holick, M.F. (eds) Biologic Effects of Light 2001. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0937-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0937-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5313-3

  • Online ISBN: 978-1-4615-0937-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics