Skip to main content

The receptor-like properties of Nitric oxide-activated soluble guanylyl cyclase in intact cells

  • Chapter
Guanylate Cyclase

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 36))

Abstract

Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO), and so mediates a wide range of effects (e.g. vasodilatation, platelet disaggregation and neural signalling) through the accumulation of cGMP and the engagement of various downstream targets, such as protein kinases and ion channels. Until recently, our understanding of sGC functioning has been derived exclusively from studies of the enzyme in tissue homogenates or in its purified form. Here, NO binds to the haem prosthetic group of sGC, triggering a conformational change and a large increase in catalytic activity. The potency (EC50) of NO appears to be about 100–200 nM. The rate of activation of sGC by NO is rapid (milliseconds) and, in the presence of excess substrate, cGMP is formed at a constant rate; on removal of NO, sGC deactivates slowly (seconds¡ªminutes). Recent investigation of the way that sGC behaves in its natural environment, within cells, has revealed several key differences. For example, the enzyme exhibits a rapidly desensitizing profile of activity; the potency of NO is 45 nM for the minimally-desensitized enzyme but becomes higher with time; deactivation of sGC on removal of NO is 25-fold faster than the fastest estimate for purified sGC. Overall, within cells, sGC behaves in a way that is analogous to the way that classical neurotransmitter receptors operate. The properties of cellular sGC have important implications for the understanding of NO-cGMP signalling. For example, the dynamics of the enzyme means that fluctuations in the rate of NO formation, even on subsecond time scale, will result in closely synchronized sGC activity in neighbouring cells; desensitization of sGC provides an economical way of generating a cellular cGMP signal and, in concert with phosphodiesterases, provides the basis for cGMP signal diversity, allowing different targets (outputs) to be selected from a common input (NO). Thus, despite exhibiting only limited molecular heterogeneity, cellular sGC functions in a way that introduces speed, complexity, and versatility into NO-cGMP signalling pathways. (Mol Cell Biochem 230: 165–176, 2002)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Palmer RM, Higgs EA: Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142, 1991

    PubMed  CAS  Google Scholar 

  2. Garthwaite J, Boulton CL: Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57: 683–706, 1995

    Article  PubMed  CAS  Google Scholar 

  3. Sanders KM, Ward SM: Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262: G379–G392, 1992

    CAS  Google Scholar 

  4. Francis SH, Corbin JD: Progress in understanding the mechanism and function of cyclic GMP-dependent protein kinase. Adv Pharmacol 26: 115–170, 1994

    Article  PubMed  CAS  Google Scholar 

  5. Zagotta WN, Siegelbaum SA: Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19: 235–263, 1996

    Article  PubMed  CAS  Google Scholar 

  6. Juilfs DM, Soderling S, Burns F, Beavo JA: Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Rev Physiol Biochem Pharmacol 135: 67–104, 1999

    Article  PubMed  CAS  Google Scholar 

  7. Beavo JA: Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol Rev 75: 725–748, 1995

    PubMed  CAS  Google Scholar 

  8. Garbers DL: Purification of soluble guanylate cyclase from rat lung. J Biol Chem 254: 240–243, 1979

    PubMed  CAS  Google Scholar 

  9. Gerzer R, Hofmann F, Bohme E, Ivanova K, Spies C, Schultz G: Purification of soluble guanylate cyclase without loss of stimulation by sodium nitroprusside. Adv Cyclic Nucleotide Res 14: 255–261, 1981

    Google Scholar 

  10. Gerzer R, Hofmann F, Schultz G: Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem 116: 479–486, 1981

    Article  PubMed  CAS  Google Scholar 

  11. Gerzer R, Bohme E, Hofmann F, Schultz G: Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132: 71–74, 1981

    Article  PubMed  CAS  Google Scholar 

  12. Wedel B, Harteneck C, Foerster J, Friebe A, Schultz G, Koesling D: Functional domains of soluble guanylyl cyclase. J Biol Chem 270: 24871–24875, 1995

    Article  PubMed  CAS  Google Scholar 

  13. Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Bohme E, Schultz G, Koesling D: Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA 91: 2592–2596, 1994

    Article  PubMed  CAS  Google Scholar 

  14. Zhao Y, Marletta MA: Localization of the heme binding region in soluble guanylate cyclase. Biochemistry 36: 15959–15964,1997

    Article  PubMed  CAS  Google Scholar 

  15. Zhao Y, Schelvis JP, Babcock GT, Marletta MA: Identification of histidine 105 in the betal subunit of soluble guanylate cyclase as the heme proximal ligand. Biochemistry 37: 4502–4509, 1998

    Article  PubMed  CAS  Google Scholar 

  16. Foerster J, Harteneck C, Malkewitz J, Schultz G, Koesling D: A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of alpha 1 and beta 1 subunits. Eur J Biochem 240: 380–386, 1996

    Article  PubMed  CAS  Google Scholar 

  17. Koesling D: Studying the structure and regulation of soluble guanylyl cyclase. Methods 19: 485–493, 1999

    Article  PubMed  CAS  Google Scholar 

  18. Sharma VS, Magde D: Activation of soluble guanylate cyclase by carbon monoxide and nitric oxide: A mechanistic model. Methods 19: 494–505, 1999

    Article  PubMed  CAS  Google Scholar 

  19. Wolin MS, Wood KS, Ignarro LJ: Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J Biol Chem 257: 13312–13320, 1982

    PubMed  CAS  Google Scholar 

  20. Traylor TG, Sharma VS: Why NO? Biochemistry 31: 2847–2849, 1992

    Article  PubMed  CAS  Google Scholar 

  21. Dierks EA, Hu S, Vogel KM, Yu AE, Spiro TG, Burstyn JN: Demonstration of the role of scission of the proximal histidine-iron bond in the activation of soluble guanylyl cyclase through metalloporphyrin substitution studies. J Am Chem Soc 119: 7316–7323, 1997

    Article  CAS  Google Scholar 

  22. Humbert P, Niroomand F, Fischer G, Mayer B, Koesling D, Hinsch KD, Gausepohl H, Frank R, Schultz G, Bohme E: Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem 190: 273–278, 1990

    Article  PubMed  CAS  Google Scholar 

  23. Stone JR, Marletta MA: Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35: 1093–1099, 1996

    Article  PubMed  CAS  Google Scholar 

  24. Stone JR, Marletta MA: The ferrous heme of soluble guanylate cyclase: Formation of hexacoordinate complexes with carbon monoxide and nitrosomethane. Biochemistry 34: 16397–16403, 1995

    Article  PubMed  CAS  Google Scholar 

  25. Makino R, Matsuda H, Obayashi E, Shiro Y, Iizuka T, Hori H: EPR characterization of axial bond in metal center of native and cobalt-substituted guanylate cyclase. J Biol Chem 274: 7714–7723, 1999

    Article  PubMed  CAS  Google Scholar 

  26. Zhao Y, Brandish PE, Ballou DP, Marletta MA: A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci USA 96: 14753–14758, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Colquhoun D: Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125: 924–947, 1998

    Article  PubMed  CAS  Google Scholar 

  28. Kharitonov VG, Sharma VS, Magde D, Koesling D: Kinetics and equilibria of soluble guanylate cyclase ligation by CO: Effect of YC-1. Biochemistry 38: 10699–10706, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Kharitonov VG, Sharma VS, Pilz RB, Magde D, Koesling D: Basis of guanylate cyclase activation by carbon monoxide. Proc Natl Acad Sci USA 92: 2568–2571, 1995

    Article  PubMed  CAS  Google Scholar 

  30. Lawson DM, Stevenson CE, Andrew CR, Eady RR: Unprecedented proximal binding of nitric oxide to heme: Implications for guanylate cyclase. EMBO J 19: 5661–5671, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Kharitonov VG, Sharma VS, Magde D, Koesling D: Kinetics of nitric oxide dissociation from five-and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry 36: 6814–6818, 1997

    Article  PubMed  CAS  Google Scholar 

  32. Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, Mathews AJ, Johnson KA, Smith RD, Phillips GN Jr, Olson JS: Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35: 6976–6983, 1996

    Article  PubMed  CAS  Google Scholar 

  33. Brandish PE, Buechler W, Marletta MA: Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: Acceleration by thiols and oxyhemoglobin. Biochemistry 37: 16898–16907, 1998

    Article  PubMed  CAS  Google Scholar 

  34. Kharitonov VG, Russwurm M, Magde D, Sharma VS, Koesling D: Dissociation of nitric oxide from soluble guanylate cyclase. Biochem Biophys Res Commun 239: 284–286, 1997

    Article  PubMed  CAS  Google Scholar 

  35. Margulis A, Sitaramayya A: Rate of deactivation of nitric oxide-stimulated soluble guanylate cyclase: Influence of nitric oxide scavengers and calcium. Biochemistry 39: 1034–1039, 2000

    Article  PubMed  CAS  Google Scholar 

  36. Senter PD, Eckstein F, Mulsch A, Bohme E: The stereochemical course of the reaction catalyzed by soluble bovine lung guanylate cyclase. J Biol Chem 258: 6741–6745, 1983

    PubMed  CAS  Google Scholar 

  37. Katsuki S, Arnold W, Mittal C, Murad F: Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3: 23–35, 1977

    PubMed  CAS  Google Scholar 

  38. Troyer EW, Hall IA, Ferrendelli JA: Guanylate cyclases in CNS: Enzymatic characteristics of soluble and particulate enzymes from mouse cerebellum and retina. J Neurochem 31: 825–833, 1978

    Article  PubMed  CAS  Google Scholar 

  39. Stone JR, Marletta MA: Soluble guanylate cyclase from bovine lung: Activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 33: 5636–5640, 1994

    Article  PubMed  CAS  Google Scholar 

  40. Lewicki JA, Brandwein HJ, Mittal CK, Arnold WP, Murad F: Properties of purified soluble guanylate cyclase activated by nitric oxide and sodium nitroprusside. J Cyclic Nucleotide Res 8: 17–25, 1982

    PubMed  CAS  Google Scholar 

  41. Denninger JW, Schelvis JP, Brandish PE, Zhao Y, Babcock GT, Marietta MA: Interaction of soluble guanylate cyclase with YC-l: Kinetic and resonance Raman studies. Biochemistry 39: 4191–4198, 2000

    Article  PubMed  CAS  Google Scholar 

  42. Tomita T, Ogura T, Tsuyama S, Imai Y, Kitagawa T: Effects of GTP on bound nitric oxide of soluble guanylate cyclase probed by resonance Raman spectroscopy. Biochemistry 36: 10155–10160, 1997

    Article  PubMed  CAS  Google Scholar 

  43. Tomita T, Tsuyama S, Imai Y, Kitagawa T: Purification of bovine soluble guanylate cyclase and ADP-ribosylation on its small subunit by bacterial toxins. J Biochem Tokyo 122: 531–536, 1997

    Article  PubMed  CAS  Google Scholar 

  44. Stone JR, Marietta MA: Heme stoichiometry of heterodimeric soluble guanylate cyclase. Biochemistry 34: 14668–14674, 1995

    Article  PubMed  CAS  Google Scholar 

  45. Bellamy TC, Wood J, Goodwin DA, Garthwaite J: Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci USA 97: 2928–2933, 2000

    Article  PubMed  CAS  Google Scholar 

  46. Mayer B, Klatt P, Bohme E, Schmidt K: Regulation of neuronal nitric oxide and cyclic GMP formation by Ca’. J Neurochem 59: 2024–2029, 1992

    Article  PubMed  CAS  Google Scholar 

  47. Beavo JA, Houslay MD: Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action. Wiley, New York, 1990

    Google Scholar 

  48. Bellamy TC, Garthwaite J: `cAMP-specific’ phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Mol Pharmacol 59: 54–61, 2001

    PubMed  CAS  Google Scholar 

  49. Lee YC, Martin E, Murad F: Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation. Proc Natl Acad Sci USA 97: 10763–10768, 2000

    Article  PubMed  CAS  Google Scholar 

  50. Jedlitschky G, Burchell B, Keppler D: The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 275: 30069–30074, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Jones MV, Westbrook GL: The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19: 96–101, 1996

    Article  PubMed  CAS  Google Scholar 

  52. Bellamy TC, Garthwaite J: Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells. J Biol Chem 276: 4287–4292, 2001

    Article  PubMed  CAS  Google Scholar 

  53. Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B: Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 50: 1–5, 1996

    PubMed  CAS  Google Scholar 

  54. Schmidt K, Desch W, Klatt P, Kukovetz WR, Mayer B: Release of nitric oxide from donors with known half-life: A mathematical model for calculating nitric oxide concentrations in aerobic solutions. Naunyn Schmiedebergs Arch Pharmacol 355: 457–462, 1997

    Article  PubMed  CAS  Google Scholar 

  55. Jones MV, Westbrook GL: Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15: 181–191, 1995

    Article  PubMed  CAS  Google Scholar 

  56. Wood J, Garthwaite J: Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33: 1235–1244, 1994

    Article  PubMed  CAS  Google Scholar 

  57. Garthwaite J, Charles SL, Chess Williams R: Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385–388, 1988

    Article  PubMed  CAS  Google Scholar 

  58. Russwurm M, Behrends S, Harteneck C, Koesling D: Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 335: 125–130, 1998

    PubMed  CAS  Google Scholar 

  59. Carter TD, Bettache N, Ogden D: Potency and kinetics of nitric oxide-mediated vascular smooth muscle relaxation determined with flash photolysis of ruthenium nitrosyl chlorides. Br J Pharmacol 122: 971–973, 1997

    Article  PubMed  CAS  Google Scholar 

  60. Kelm M, Feelisch M, Spahr R, Piper H-M, Noack E, Schrader J: Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 154: 236–244, 1988

    Article  PubMed  CAS  Google Scholar 

  61. Berridge MJ, Bootman MD, Lipp P: Calcium-a life and death signal. Nature 395: 645–648, 1998

    Article  PubMed  CAS  Google Scholar 

  62. Hohmann M, Heinemann S: Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108, 1994

    Article  Google Scholar 

  63. Kim TD, Burstyn JN: Identification and partial purification of an endogenous inhibitor of soluble guanylyl cyclase from bovine lung. J Biol Chem 269: 15540–15545, 1994

    PubMed  CAS  Google Scholar 

  64. Zwiller J, Revel MO, Malviya AN: Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J Biol Chem 260: 1350–1353, 1985

    PubMed  CAS  Google Scholar 

  65. Zwiller J, Revel MO, Basset P: Evidence for phosphorylation of rat brain guanylate cyclase by cyclic AMP-dependent protein kinase. Biochem Biophys Res Commun 101: 1381–1387, 1981

    Article  PubMed  CAS  Google Scholar 

  66. Louis JC, Revel MO, Zwiller J: Activation of soluble guanylate cyclase through phosphorylation by protein kinase C in intact PC12 cells. Biochim Biophys Acta 1177: 299–306, 1993

    Article  PubMed  CAS  Google Scholar 

  67. White BH, Klein DC: Stimulation of cyclic GMP accumulation by sodium nitroprusside is potentiated via a Gs mechanism in intact pinealocytes. J Neurochem 64: 711–717, 1995

    Article  PubMed  CAS  Google Scholar 

  68. Ferrero R, Rodriguez-Pascual F, Miras-Portugal MT, Torres M: Nitric oxide-sensitive guanylyl cyclase activity inhibition through cyclic GMP-dependent dephosphorylation. J Neurochem 75: 2029–2039, 2000

    Article  PubMed  CAS  Google Scholar 

  69. Potter LR, Garbers DL: Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. J Biol Chem 269: 14636–14642, 1994

    PubMed  CAS  Google Scholar 

  70. Potter LR: Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptor B: Dephosphorylation is a mechanism of desensitization. Biochemistry 37: 2422–2429, 1998

    Article  PubMed  CAS  Google Scholar 

  71. Parkinson SJ, Jovanovic A, Jovanovic S, Wagner F, Terzic A, Waldman SA: Regulation of nitric oxide-responsive recombinant soluble guanylyl cyclase by calcium. Biochemistry 38: 6441–6448, 1999

    Article  PubMed  CAS  Google Scholar 

  72. Knowles RG, Palacios M, Palmer RM, Moncada S: Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86: 5159–5162, 1989

    Article  PubMed  CAS  Google Scholar 

  73. Waldman SA, Rapoport RM, Ginsburg R, Murad F: Desensitization to nitroglycerin in vascular smooth muscle from rat and human. Biochem Pharmacol 35: 3525–3531, 1986

    Article  PubMed  CAS  Google Scholar 

  74. Filippov G, Bloch DB, Bloch KD: Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells. J Clin Invest 100: 942–948, 1997

    Article  PubMed  CAS  Google Scholar 

  75. Ujiie K, Hogarth L, Danziger R, Drewett JG, Yuen PS, Pang IH, Star RA: Homologous and heterologous desensitization of a guanylyl cyclase-linked nitric oxide receptor in cultured rat medullary interstitial cells. J Pharmacol Exp Ther 270: 761–767, 1994

    PubMed  CAS  Google Scholar 

  76. Scott WS, Nakayama DK: Sustained nitric oxide exposure decreases soluble guanylate cyclase mRNA and enzyme activity in pulmonary artery smooth muscle. J Surg Res 79: 66–70, 1998

    Article  PubMed  CAS  Google Scholar 

  77. Baltrons MA, Garcia A: Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells. J Neurochem 73: 2149–2157, 1999

    PubMed  CAS  Google Scholar 

  78. Moncada S, Rees DD, Schultz R, Palmer RMJ: Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 88: 2166–2170, 1991

    Article  PubMed  CAS  Google Scholar 

  79. Hussain MB, Hobbs AJ, MacAllister RJ: Autoregulation of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta. Br J Pharmacol 128: 1082–1088, 1999

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bellamy, T.C., Garthwaite, J. (2002). The receptor-like properties of Nitric oxide-activated soluble guanylyl cyclase in intact cells. In: Sharma, R.K. (eds) Guanylate Cyclase. Developments in Molecular and Cellular Biochemistry, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0927-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0927-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5308-9

  • Online ISBN: 978-1-4615-0927-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics