Non-Myeloablative Allogeneic Transplantation pp 1-37

Part of the Cancer Treatment and Research book series (CTAR, volume 110)

Development of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

  • Januario E. Castro
  • Edward D. Ball

Abstract

The field of BMT has entered a new phase based on insights into basic molecular and cellular biology. The mechanism of cure mediated by allogeneic HSCT is now believed to be at least partially mediated by cellular attack against tumor-associated antigens. Better understanding of these cellular targets and the means of targeting them specifically will allow a more precise application of cellular therapy than is currently possible. This in turn may make it possible to design therapies that are increasingly selective without the collateral toxicities of GVHD, infection, and direct organ damage that currently are the limiting features of allogeneic HSCT as racticed until recently. However, it remains a challenge to demonstrate that disease-control using reduced intensity preparative regimens is at least comparable to that achieved by traditional myeloablative HSCT. This will require carefully controlled studies in each the major diseases that have shown sensitivity to the immune-mediated effects of HSCT. The chapters below will highlight progress towards the goals of elucidating the role of NST.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Osgood EE, Riddle MC, Mathews TJ. Aplastic anemia treated with daily transfusions and intravenous marrow: case report. Ann Intern Med 1939;13(357–367).Google Scholar
  2. 2.
    Appelbaum FR. Haematopoietic cell transplantation as immunotherapy. Nature 2001;411:385–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Anasetti C, Amos D, Beatty PG, Appelbaum FR, Bensinger W, Buckner CD, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med 1989;320(4):197–204.PubMedCrossRefGoogle Scholar
  4. 4.
    McGlave PB, Shu XO, Wen W, Anasetti C, Nademanee A, Champlin R, et al. Unrelated donor marrow transplantation for chronic myelogenous leukemia: 9 years’ experience of the National Marrow Donor Program. Blood 2000;95(7):2219–25.PubMedGoogle Scholar
  5. 5.
    Jacobson LO, E.L. S, Marks EK, Eldredge JH. Recovery from radiation injury. Science 1951;113:510–1.PubMedCrossRefGoogle Scholar
  6. 6.
    Lorenz E, Uphoff EL, Reid TR, Shelton F. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J.Natl Cancer Inst 1961;12:197–201.Google Scholar
  7. 7.
    Uphoff DE. Genetic factors influencing irradiation protection by bone marrrow. I: the FI hybrid effect. J Natl Cancer Inst 1957;19:123–5.PubMedGoogle Scholar
  8. 8.
    Snell GD. The Nobel Lectures in Immunology. Lecture for the Nobel Prize for Physiology or Medicine, 1980: Studies in histocompatibility. Scand J Immunol 1992;36(4):513–26.PubMedGoogle Scholar
  9. 9.
    Barnes DWH, Corp JH, Loutitj F. Treatment of murine leukemia with x-rays an homologous bone marrow. Preliminary communication. Brit Med J 1956;2:626–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Bortin MM, Rimm AA, Saltzstein EC, Rodey GE. Graft vs leukemia III; apparent independent antihost and anti-leukemic activity of transplanted immunocompetent cells. Transplant 1973;16:182–8.CrossRefGoogle Scholar
  11. 11.
    Truitt RL, Johnson BD, McCabe CM, Weiler MB. Graft vs leukemia. In: Perraraj LM, Deeg,H.J. and Burakoff,S.J., editor. Graft vs. host disease. New York: Marcel Dekker; 1997. p. 385–423.Google Scholar
  12. 12.
    Good RA, Dalmasso AP, Martinez C, Archer OK, Pierre JC, Papermaster BW. The role of thymus in development of immunologic capacity in rabbits and mice. J Exp Med 1962;116:773–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller JE. Immunity and the thymus. Lancet 1963;1:43–5.Google Scholar
  14. 14.
    Cooper MD, Percy DY, Peterson RDA, Gabrielsen AF, Good RA. The two component concept of the lymphoid system. In: Bergsman O, Good,R.A., editor. Immunologic deficiency disease in man. Philadelphia: Lea & Febiger; 1968. p. 175–97.Google Scholar
  15. 15.
    Boak JL, Fox M, Wilson RE. Activity of lymphoid tissues from anti-lymphocyte serum treated mice. Lancet 1967;1:751–2.Google Scholar
  16. 16.
    Brent L, CourtenayT, G. G. Immunological reactivity of Lymphoid cells after treatment with anti—lymphocytic serum. Nature 1967;215:1461–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Zinkernagel RM, Doherty PC. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol 1979;27:51–177.PubMedCrossRefGoogle Scholar
  18. 18.
    Suthanthiran M. Transplantation tolerance: fooling mother nature. Proc Natl Acad Sci U S A 1996;93(22):12072–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Steinmuller I, Motulsky AG. Treatment of hereditary spherocytosis in peromyscus by radiation and allogeneic bone marrow transplantation. Blood 1967;29:320–30.PubMedGoogle Scholar
  20. 20.
    Walker DG. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 1975;190 (4216):784–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas ED. The development of the scientific foundation of hematopoietic cell transplantation based on anmal and human studies. In: Thomas EE, Blume KG, Forman SJ, editors. Hematopoietic Cell Transplantation. Malden, MA: Blackwell Scientific; 1999.Google Scholar
  22. 22.
    Matsnick JA, Lochte HL, Jr, Ashely CA, Thomas ED, Ferrebee JW. Autografts of bone marrow in dogs after letal total body radiation. Blood 1960;15:255–66.Google Scholar
  23. 23.
    Cavins JA, Scheer SC, Thomas ED, Ferrebee JW. The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at -80°C. Blood 1964;23:38–43.PubMedGoogle Scholar
  24. 24.
    Thomas ED, LeBlond R, Graham T, Storb R. Marrow infusions in dogs given midlethal or lethal irradiation. Radiat Res 1970;41 (1):113–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Storb R, Dreg HJ. Failure of allogeneic canine marrow grafts after total body irradiation: allogeneic “resistance” vs. transfusion induced sensitization. Transplantation 1986;42:571–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Storb R, Raff RF, Appelbaum FR, Graham TC, Schuening FG, Sale G, et al. Comparison of fractionated to single-dose total body irradiation in conditioning canine littermates for DLA-identical marrow grafts. Blood 1989;74(3):1139–43.PubMedGoogle Scholar
  27. 27.
    Epstein RB, Storb R, Clift RA, Thomas ED. Autologous bone marrow grafts in dogs treated with lethal doses of cyclophosphamide. Cancer Res 1969;29(5):1072–5.PubMedGoogle Scholar
  28. 28.
    Storb R, Epstein RB, Rudolph RH, Thomas ED. Allogeneic canine bone marrow transplantation following cyclophosphamide. Transplantation 1969;7(5):378–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Storb R, Weiden PL, Graham TC, Lerner KG, Nelson N, Thomas ED. Hemopoietic grafts between DLA-identical canine littermates following dimethyl myleran. Evidence for resistance to grafts not associated with DLA and abrogated by antithymocyte serum. Transplantation 1977;24(5):349–57.PubMedCrossRefGoogle Scholar
  30. 30.
    van Beckkum DW, Balner H, Dicke KA. Experimental aspects of bone marrow transplantation in primates. Transplant Proc 1969; 1:25–30.Google Scholar
  31. 31.
    Thomas ED, Ferrebee JW. Irradiation and marrow transplantation studies in Cooperstown. Lancet 1960;11:1289–90.CrossRefGoogle Scholar
  32. 32.
    Dausset J. Leuco-agglutinins. IN Leucoagglutinins and blood transfusion. Vox Sang 1954;4:190.Google Scholar
  33. 33.
    Miescher P, Fauconnet M. Mise en evidence de differents groupes leucocytaires chez l’homme. Schweiz Med Wochenschr 1954;84: 597–9.Google Scholar
  34. 34.
    Dausset J. Leuco-agglutinins. IV Leuco-agglutinins and blood transfusion. Vox Sang 1954;4:190.Google Scholar
  35. 35.
    Payne R, Tripp M, Weigle J, Bodmer W, Bodmer J. A new leukocyte isoantigenic system in man. Cold Spring Harbor Symp Quant Biol 1964;29(285-).PubMedCrossRefGoogle Scholar
  36. 36.
    Geraghty DE. Structure of the HLA class I region and expression of its resident genes. Curr Opin Immunol 1993;5(1):3–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Geraghty DE, Wei XH, Orr HT, Koller BH. Human leukocyte antigen F (HLA-F). An expressed HLA gene composed of a class I coding sequence linked to a novel transcribed repetitive element. J Exp Med 1990;171(1):1–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Geraghty DE, Koller BH, Orr HT. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci U S A 1987;84(24):9145–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Koller BH, Geraghty DE, Shimizu Y, DeMars R, Orr HT. HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J Immunol 1988;141(3):897–904.PubMedGoogle Scholar
  40. 40.
    Busch R, Mellins ED. Developing and shedding inhibitions: how MHC class II molecules reach maturity. Curr Opin Immunol 1996;8 (1):51–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Marsh SG, Bodmer JG. HLA class II region nucleotide sequences, 1995. Tissue Antigens 1995;46(3 (Pt 2)):258–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Rosner G, Martell J, Trucco M. Histocompatibility. IN Hematopoietic Stem Cell Therapy, Ball ED, Lister J, Law P, eds. W.B. Saunders Publishing Company, Philadelphia, PA, 2000.Google Scholar
  43. 43.
    Arnett KL, Moses JH, Williams F, Marsh SG, Bodmer JG, Parham P, et al. HLA-A *2607: sequence of a novel A*26 subtype predicted by DNA typing which shares the MA2.1 epitope with A*02, B*57 and B*58. Tissue Antigens 1996;47(5):422–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Begovich AB, McClure GR, Suraj VC, Helmuth RC, Fildes N, Bugawan TL, et al. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. J Immunol 1992;148(1):24958.Google Scholar
  45. 45.
    Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. J Hematother 1992;1(2):115–29.PubMedCrossRefGoogle Scholar
  46. 46.
    Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997;3(12):1337–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Nakauchi H. Hematopoietic stem cells: are they CD34positive or CD34-negative Nat Med 1998;4(9):1009–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Ema H, Takano H, Sudo K, Nakauchi H. In vitro self-renewal division of hematopoietic stem cells. J Exp Med 2000;192(9):12818.CrossRefGoogle Scholar
  49. 49.
    Gao Z, Fackler MJ, Leung W, Lumkul R, Ramirez M, Theobald N, et al. Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34- cell preparations. Exper. Hematology 2000;29(7):910–21.Google Scholar
  50. 50.
    Storb R, Epstein RB, Ragde H, Bryant J, Thomas ED. Marrow engraftment by allogeneic leukocytes in lethally irradiated dogs. Blood 1967;30(6):805–11.PubMedGoogle Scholar
  51. 51.
    Korbling M, Fliedner TM, Calvo W, Ross WM, Nothdurft W, Steinbach I. Albumin density gradient purification of canine hemopoietic blood stem cells (HBSC): long-term allogeneic engraftment without GVHreaction. Exp Hematol 1979;7(6):277–88.PubMedGoogle Scholar
  52. 52.
    Gerhartz HH, Nothdurft W, Carbonell F, Fliedner TM. Allogeneic transplantation of blood stem cells concentrated by density gradients. Exp Hematol 1985;13(2):136–42.PubMedGoogle Scholar
  53. 53.
    Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988;1(8596):1194–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Siena S, Bregni M, Brando B, Ravagnani F, Bonadonna G, Gianni AM. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1989;74(6):1905–14.PubMedGoogle Scholar
  55. 55.
    Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 1997;6(5):447–55.PubMedGoogle Scholar
  56. 56.
    Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 1999;27(9):1460–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001;344(3):175–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Bensinger WI, Martin P, Clift Rea. A prospective, randomised trial of peripheral blood stem cells (PBSC) or marrow (BM) for patients undergoing allogeneic transplantation for hematologic malignancies. Blood 1999;94(suppl 1):3682.Google Scholar
  59. 59.
    Korbling M, Przepiorka D, Huh YO, Engel H, van Besien K, Giralt S, et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 1995;85(6):1659–65.PubMedGoogle Scholar
  60. 60.
    Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Loffler H, et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 1995;85(6):1666–72.PubMedGoogle Scholar
  61. 61.
    Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA, et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997;90(8):2939–51.PubMedGoogle Scholar
  62. 62.
    Molineux G, McCrea C, Yan XQ, Kerzic P, McNiece I. Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with longterm repopulating potential. Blood 1997;89(11):3998–4004.PubMedGoogle Scholar
  63. 63.
    Sudo Y, Shimazaki C, Ashihara E, Kikuta T, Hirai H, Sumikuma T, et al. Synergistic effect of FLT-3 ligand on the granulocyte colony-stimulating factor-induced mobilization of hematopoietic stem cells and progenitor cells into blood in mice. Blood 1997;89(9):3186–91.PubMedGoogle Scholar
  64. 64.
    Buckner CD, Clift RA, Sanders JE, Stewart P, Bensinger WI, Doney KC, et al. Marrow harvesting from normal donors. Blood 1984;64(3):630–4.PubMedGoogle Scholar
  65. 65.
    Confer DL, Stroncek DF. Bone marrow and peripheral blood stem cell donors. IN: Thomas ED BK, Forman SJ., Eds. In Bone Marrow Transplantation. Oxford: Blackwell Science; 1999.Google Scholar
  66. 66.
    Falanga A, Marchetti M, Evangelista V, Manarini S, Oldani E, Giovanelli S, et al. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood 1999;93(8):2506–14.PubMedGoogle Scholar
  67. 67.
    Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA, et al. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant 1997;3(1):45–9.PubMedGoogle Scholar
  68. 68.
    Anderlini P, Przepiorka D, Seong D.Clinical toxicity and laboratory effects of granulocyte colony stimulating factor (filgrastim) mobilization and collection of peripheral blood progenitor cells in normal volunteers. 1995 (86): 4437–4445.Google Scholar
  69. 69.
    Ringden O, Remberger M, Runde V, Bornhauser M, Blau IW, Basara N, et al. Faster engraftment of neutrophils and platelets with peripheral blood stem cells from unrelated donors: a comparison with marrow transplantation. Bone Marrow Transplant 2000;26 Suppl 2:S6–8.CrossRefGoogle Scholar
  70. 70.
    Heldal D, Tjonnfjord G, Brinch L, Albrechtsen D, Egeland T, Steen R, et al. A randomised study of allogeneic transplantation with stem cells from blood or bone marrow. Bone Marrow Transplant 2000;25:1129–36.PubMedCrossRefGoogle Scholar
  71. 71.
    Bacigalupo A, Zikos P, Van Lint MT, Valbonesi M, Lamparelli T, Gualandi F, et al. Allogeneic bone marrow or peripheral blood cell transplants in adults with hematologic malignancies: a single-center experience. Exp Hematol 1998;26(5):409–14.PubMedGoogle Scholar
  72. 72.
    Ottinger HD, Beelen DW, Scheulen B, Schaefer UW, Grosse-Wilde H. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 1996;88(7):2775–9.PubMedGoogle Scholar
  73. 73.
    Storek J, Dawson MA, Storer B, Stevens-Ayers T, Maloney DG, Marr KA, et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001;97(1):3380–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Majolino J, Saglio G, Scrime R. High incidence of chronic GvHD after primary allogeneic peripheral blood stem cell transplantation in patients with hematological malignancies. Bone Marrow Transplant 1996;17:555–60.PubMedGoogle Scholar
  75. 75.
    Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, Cornelissen JJ, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood 2000;95(12):3702–9.PubMedGoogle Scholar
  76. 76.
    Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 1981;304(25):1529–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Zikos P, Van Lint MT, Lamparelli T, Gualandi F, Occhini D, Bregante S, et al. Allogeneic hemopoietic stem cell transplantation for patients with high risk acute lymphoblastic leukemia: favorable impact of chronic graft-versus-host disease on survival and relapse. Haematologica 1998;83(10):896–903.PubMedGoogle Scholar
  78. 78.
    Rocha V, Wagner JE, Jr., Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engi J Med 2000;342(25):1846–54.CrossRefGoogle Scholar
  79. 79.
    Thomson BG, Robertson KA, Gowan D, Heilman D, Broxmeyer HE, Emanuel D, et al. Analysis of engraftment, graft-versus-ho ’ disease, and immune recovery following unrelated donor cord b’ transplantation. Blood 2000;96(8):2703–11.PubMedGoogle Scholar
  80. 80.
    Wagner JE. Umbilical cord blood transplantation: overview of the clinical experience. Blood Cells 1994;20(2–3):227–33.PubMedGoogle Scholar
  81. 81.
    Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001;344(24):1815–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Storb R, Epstein RB, Graham TC, Thomas ED. Methotrexate regimens for control of graft-versus-host disease in dogs with allogeneic marrow grafts. Transplantation 1970;9(3):240–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Borel JF, Feurer C, Gubler HU, Stahelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 1976;6(4):468–75.PubMedCrossRefGoogle Scholar
  84. 84.
    Powles RL, Barrett AJ, Clink H, Kay HE, Sloane J, McElwain TJ. Cyclosporin A for the treatment of graft-versus-host disease in man. Lancet 1978;2(8104–5):1327–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Deeg HJ, Storb R, Weiden PL, Raff RF, Sale GE, Atkinson K, et al. Cyclosporin A and methotrexate in canine marrow transplantation: engraftment, graft-versus-host disease, and induction of intolerance. Transplantation 1982;34(1):30–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Deeg HJ, Storb R, Appelbaum FR, Kennedy MS, Graham TC, Thomas ED. Combined immunosuppression with cyclosporine and methotrexate in dogs given bone marrow grafts from DLA-haploidentical littermates. Transplantation 1984;37(1):62–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Nash RA, Antin JH, Karanes C, Fay JW, Avaalos BR, Yeager AM, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosponrine for prophylaxis of actue graft vs. host disease after marrow transplantation from unrelated donors. Blood 2000;96(6):2062–8.PubMedGoogle Scholar
  88. 88.
    Yu C, Linsley P, Seidel K, Sale G, Deeg HJ, Nash RA, et al. Cytotoxic T lymphocyte antigen 4-immunoglobulin fusion protein combined with methotrexate/cyclosporine as graft-versus-host disease prevention in a canine dog leukocyte antigen-nonidentical marrow transplant model. Transplantation 2000;69(3):450–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Guinan EC, Boussiotis VA, Neuberg D, Brennan LL, Hirano N, Nadler LM, et al. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 1999;340(22):1704–14.PubMedCrossRefGoogle Scholar
  90. 90.
    Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 1945;102:400.PubMedCrossRefGoogle Scholar
  91. 91.
    Burnet FJ, Fenner F. The production of antibodies. Melbourne: MacMillan; 1949.Google Scholar
  92. 92.
    Billingham RE, Brent L, Medawar PB. Actively acquiredtolerance of foreign cells. Nature 1953;172:603.Google Scholar
  93. 93.
    Wengler GS, Lanfranchi A, Frusca T, Verardi R, Neva A, Brugnoni D, et al. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI). Lancet 1996;348(9040):1484–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Tsoi MS, Storb R, Weiden PL, Graham TC, Schroeder ML, Thomas ED. Canine marrow transplantation: are serum blocking factors necessary to maintain the stable chimeric state J Immunol 1975;114(2 Pt 1): 531–9.PubMedGoogle Scholar
  95. 95.
    Atkinson K, Storb R, Weiden PL, Deeg HJ, Gerhard-Miller L, Thomas ED. In vitro tests correlating with presence or absence of graftvs-host disease in DLA nonidentical canine radiation chimeras: evidence that clonal abortion maintains stable graft-host tolerance. J Immunol 1980; 124(4):1808–14.PubMedGoogle Scholar
  96. 96.
    Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.PubMedCrossRefGoogle Scholar
  97. 97.
    Mondino A, Khoruts A, Jenkins MK. The anatomy of T-cell activation and tolerance. Proc Natl Acad Sci U S A 1996;93(6):2245–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996;184(1):1–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Wells AD, Li XC, Li Y, Walsh MC, Zheng XX, Wu Z, et l. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999;5(11):1303–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Castro JE, Listman JA, Jacobson BA, Wang Y, Lopez PA, Ju S, et al. Fas modulation of apoptosis during negative selection of thymocytes. Immunity 1996;5(6):617–27.PubMedCrossRefGoogle Scholar
  101. 101.
    TA. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 1997;99(3):396–402.PubMedCrossRefGoogle Scholar
  102. 102.
    Zeng D, Lewis D, Dejbakhsh-Jones S, Lan F, Garcia-Ojeda M, Sibley R, et al. Bone marrow NK1.1(-) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 1999;189 (7):1073–81.PubMedCrossRefGoogle Scholar
  103. 103.
    Krenger W, Cooke KR, Crawford JM, Sonis ST, Simmons R, Pan L, et al. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease. Transplantation 1996;62(9):1278–85.PubMedCrossRefGoogle Scholar
  104. 104.
    Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem HP, et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 1997;89(8):304–854.Google Scholar
  105. 105.
    Storb R, Yu C, Barnett T, Wagner JL, Deeg HJ, Nash RA, et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation. Blood 1999;94(3):1131–6.PubMedGoogle Scholar
  106. 106.
    Wekerle T, Sykes M. Mixed chimerism as an approach for the induction of transplantation tolerance. Transplantation 1999;68(4):45967.CrossRefGoogle Scholar
  107. 107.
    Sykes M, Preffer F, McAfee S, Saidman SL, Weymouth D, Andrews DM, et al. Mixed lymphohaemopoietic chimerism and graftversus-lymphoma effects after non-myeloablative therapy and HLAmismatched bone-marrow transplantation. Lancet 1999;353(9166):1755–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S, et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999;94(9):3234–41.PubMedGoogle Scholar
  109. 109.
    Sykes M, Eisenthal A, Sachs DH. Mechanism of protection from graft-vs-host disease in murine mixed allogeneic chimeras. I. Development of a null cell population suppressive of cell-mediated lympholysis responses and derived from the syngeneic bone marrow component. J Immunol 1988;140(9):2903–11.PubMedGoogle Scholar
  110. 110.
    Kawai T, Cosimi AB, Colvin RB, Powelson J, Eason J, Kozlowski T, et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 1995;59(2):256–62.PubMedGoogle Scholar
  111. 111.
    Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000;343(11):750–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Schwartz RS. The new immunology--the end of immunosuppressive drug therapy? N Engl J Med 1999;340(22):1754–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Thomas E, D., Buckner CD, Rudolph RH, et al.Allogeneic marrow grafting for hematologic malignancy using HLA matched donor-recipient sibling pairs. 38 1971(267–287).Google Scholar
  114. 114.
    Santos GW, Sensenbrenner LL, Burke PJ, Colvin M, Owens AH, Jr., Bias WB, et al. Marrow transplanation in man following cyclophosphamide. Transplant Proc 1971;3(1):400–4.PubMedGoogle Scholar
  115. 115.
    Yoshimura N, Kahan BD. Pharmacodynamic assessment of the in vivo cyclosporine effect on interleukin-2 production by lymphocytes in kidney transplant recipients. Transplantation 1985;40(6):661–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Prince HE, John JK. Cyclosporine inhibits the expression of receptors for interleukin 2 and transferrin on mitogen-activated human T lymphocytes. Immunol Invest 1986;15(5):463–72.PubMedCrossRefGoogle Scholar
  117. 117.
    Bishop DK, Li W. Cyclosporin A and FK506 mediate differential effects on T cell activation in vivo. J Immunol 1992;148(4):1049–54.PubMedGoogle Scholar
  118. 118.
    Eugui EM, Allison AC. Immunosuppressive activity of mycophenolate mofetil. Ann N Y Acad Sci 1993;685:309–29.PubMedCrossRefGoogle Scholar
  119. 119.
    Shank B, Chu FC, Dinsmore R, Kapoor N, Kirkpatrick D, Teitelbaum H, et al. Hyperfractionated total body irradiation for bone marrow transplantation. Results in seventy leukemia patients with allogeneic transplants. Int J Radiat Oncol Biol Phys 1983;9(11):1607–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Thomas ED, Clift RA, Hersman J. Marrow transplantation for acute non-lymphoblastic leukemia in first remission using fracionated or single-dose irradiation. Int J Radiat Oncol Biol Phys 1982;8:817-.PubMedCrossRefGoogle Scholar
  121. 121.
    Santos GW, Sensenbrenner LL, Burke PJ, Mullins GM, Anderson PN, Tutschka PJ, et al. Allogeneic marrow grafts in man using cyclophosphamide. Transplant Proc 1974;6(4):345–8.PubMedGoogle Scholar
  122. 122.
    Clift RA, Buckner CD, Thomas ED, Bensinger WI, Bowden R, Bryant E, et al. Marrow transplantation for chronic myeloid leukemia: a randomized study comparing cyclophosphamide and total body irradiation with busulfan and cyclophosphamide. Blood 1994;84(6):203–643.Google Scholar
  123. 123.
    Devergie A, Blaise D, Attal M, Tigaud JD, Jouet JP, Vernant JP, et al. Allogeneic bone marrow transplantation for chronic myeloid leukemia in first chronic phase: a randomized trial of busulfancytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the French Society of Bone Marrow Graft (SFGM). Blood 1995;85(8):2263–8.PubMedGoogle Scholar
  124. 124.
    Blume KG, Forman SJ, O’Donnell MR, Doroshow JH, Krance RA, Nademanee AP, et al. Total body irradiation and high-dose etoposide: a new preparatory regimen for bone marrow transplantation in patients with advanced hematologic malignancies. Blood 1987;69(4):101–520.Google Scholar
  125. 125.
    Long GD, Amylon MD, Stockerl-Goldstein KE, Negrin RS, Chao NJ, Hu WW, et al. Fractionated total-body irradiation, etoposide, and cyclophosphamide followed by allogeneic bone marrow transplantation for patients with high-risk or advanced-stage hematological malignancies. Biol Blood Marrow Transplant 1997;3(6):324–30.PubMedGoogle Scholar
  126. 126.
    Horning SJ, Negrin RS, Chao JC, Long GD, Hoppe RT, Blume KG. Fractionated total-body irradiation, etoposide, and cyclophosphamide plus autografting in Hodgkin’s disease and non-Hodgkin’s lymphoma. J Clin Oncol 1994;12(12):2552–8.PubMedGoogle Scholar
  127. 127.
    Weaver CH, Petersen FB, Appelbaum FR, Bensinger WI, Press O, Martin P, et al. High-dose fractionated total-body irradiation, etoposide, and cyclophosphamide followed by autologous stem-cell support in patients with malignant lymphoma. J Clin Oncol 1994;12(12):2559–66.PubMedGoogle Scholar
  128. 128.
    Barlogie B, Alexanian R, Dicke KA, Zagars G, Spitzer G, Jagannath S, et al. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987;70(3):869–72.PubMedGoogle Scholar
  129. 129.
    Riddell S, Appelbaum FR, Buckner CD, Stewart P, Clift R, Sanders J, et al. High-dose cytarabine and total body irradiation with or without cyclophosphamide as a preparative regimen for marrow transplantation for acute leukemia. J Clin Oncol 1988;6(4):576–82.PubMedGoogle Scholar
  130. 130.
    Jillella AP, Doria R, Khan K, Zelterman D, Ahmad YH, Smith BR, et al. Cyclophosphamide, cytosine arabinoside and TBI as a conditioning regimen for allogeneic bone marrow transplantation in patients with leukemia. Bone Marrow Transplant 1999;23(11):1095–100.PubMedCrossRefGoogle Scholar
  131. 131.
    Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999;94(4):1237–47.PubMedGoogle Scholar
  132. 132.
    Blaise D, Maraninchi D, Archimbaud E, Reiffers J, Devergie A, Jouet JP, et al. Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of a busulfanCytoxan versus Cytoxan-total body irradiation as preparative regimen: a report from the Group d’Etudes de la Greffe de Moelle Osseuse. Blood 1992; 79(10):2578–82.PubMedGoogle Scholar
  133. 133.
    Henner WD, Furlong EA, Flaherty MD, Shea TC, Peters WP. Measurement of busulfan in plasma by high-performance liquid chromatography. J Chromatogr 1987;416(2):426–32.PubMedGoogle Scholar
  134. 134.
    Grochow LB, Jones RJ, Brundrett RB, Braine HG, Chen TL, Saral R, et al. Pharmacokinetics of busulfan: correlation with venoocclusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1989;25(1):55–61.PubMedCrossRefGoogle Scholar
  135. 135.
    Grochow LB. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin Oncol 1993;20(4 Supp14):18–25;PubMedGoogle Scholar
  136. 136.
    Andersson BS, Gajewski J, Donato M, Giralt S, Gian V, Wingard J, et al. Allogeneic stem cell transplantation (BMT) for AML and MDS following i.v. busulfan and cyclophosphamide (i.v. BuCy). Bone Marrow Transplant 2000;26 Supp12:S35–8.CrossRefGoogle Scholar
  137. 137.
    Gale RP, Horowitz MM, Ash RC, Champlin RE, Goldman JM, Rimm AA, et al. Identical-twin bone marrow transplants for leukemia. Ann Intern Med 1994;120(8):646–52.PubMedGoogle Scholar
  138. 138.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990;75(3):555–62.PubMedGoogle Scholar
  139. 139.
    Sullivan KM, Weiden PL, Storb R, Witherspoon RP, Fefer A, Fisher L, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLAidentical siblings as treatment of acute and chronic leukemia. Blood 1989;73(6):1720–8.PubMedGoogle Scholar
  140. 140.
    Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E, et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988;108(6):806–14.PubMedGoogle Scholar
  141. 141.
    Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 1991;78(8):2120–30.PubMedGoogle Scholar
  142. 142.
    Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990;76(12):2462–5.PubMedGoogle Scholar
  143. 143.
    Porter DL, Roth MS, McGarigle C, Ferrara JL, Antin JH. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 1994;330(2):100–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995;86(5):2041–50.PubMedGoogle Scholar
  145. 145.
    Giralt S, Hester J, Huh Y, Hirsch-Ginsberg C, Rondon G, Seong D, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 1995;86(11):4337–43.PubMedGoogle Scholar
  146. 146.
    Collins RH, Jr., Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997;15(2):433–44.PubMedGoogle Scholar
  147. 147.
    Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood 1996;87(3):1196–8.PubMedGoogle Scholar
  148. 148.
    Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ. Graft-versus-myeloma effect in two cases. Lancet 1996;347(9004):800–1.PubMedCrossRefGoogle Scholar
  149. 149.
    deMagalhaes-Silverman M, Donnenberg A, Hammert L, Lister J, Myers D, Simpson J, et al. Induction of graft-versus-leukemia effect in a patient with chronic lymphocytic leukemia. Bone Marrow Transplant 1997;20(2):175–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Goulmy E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev 1997;157:125–40.PubMedCrossRefGoogle Scholar
  151. 151.
    Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 1999;93(7):2336–41.PubMedGoogle Scholar
  152. 152.
    Bonnet D, Warren EH, Greenberg PD, Dick JE, Riddell SR. CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc Natl Acad Sci U S A 1999;96(15):8639–44.PubMedCrossRefGoogle Scholar
  153. 153.
    Vogt MH, Goulmy E, Kloosterboer FM, Blokland E, de Paus RA, Willemze R, et al. UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood 2000;96(9):3126–32.PubMedGoogle Scholar
  154. 154.
    Blume KG, Forman SJ, Nademanee AP, O’Donnell MR, Snyder DS, Fahey JL, et al. Bone marrow transplantation for hematologic malignancies in patients aged 30 years or older. J Clin Oncol 1986;4(10):1489–92.PubMedGoogle Scholar
  155. 155.
    Klingemann HG, Storb R, Fefer A, Deeg HJ, Appelbaum FR, Buckner CD, et al. Bone marrow transplantation in patients aged 45 years and older. Blood 1986;67(3):770–6.PubMedGoogle Scholar
  156. 156.
    Ringden O, Horowitz MM, Gale RP, Biggs JC, Gajewski J, Rimm AA, et al. Outcome after allogeneic bone marrow transplant for leukemia in older adults. Jama 1993;270(1):57–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Epstein RB, Storb R, Ragde H, Thomas ED. Cytotoxic typing antisera for marrow grafting in littermate dogs. Transplantation 1968;6(1):45–58.PubMedCrossRefGoogle Scholar
  158. 158.
    Storb R, Epstein RB, Rudolph RH, Thomas ED. The effect of prior transfusion on marrow grafts between histocompatible canine siblings. J Immunol 1970;105(3):627–33.PubMedGoogle Scholar
  159. 159.
    Giralt S, Estey E, Albitar M, van Besien K, Rondon G, Anderlini P, et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versusleukemia without myeloablative therapy. Blood 1997;89(12):4531–6.PubMedGoogle Scholar
  160. 160.
    Giralt S, Cohen A, Mehra R, Gajewski J, Andersson B, Przepiorka Dea. Preliminary results of fludarabine/melphalan or 2CDA/melphalan as preparative regimens for allogeneic progenitor cell transplantation (ALLO-PCT) in poor candidates for conventional myeloablative conditioning. Blood 1997;90:417a.Google Scholar
  161. 161.
    Giralt S, Thall PF, Khouri I, Wang X, Braunschweig I, Ippolitti C, et al. Melphalan and purine analog-containing preparative regimens: reduced-intensity conditioning for patients with hematologic malignancies undergoing allogeneic progenitor cell transplantation. Blood 2001;97(3):631–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Khouri IF, Keating M, Korbling M, Przepiorka D, Anderlini P, O’Brien S, et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998;16(8):2817–24.PubMedGoogle Scholar
  163. 163.
    Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998;91(3):756–63.PubMedGoogle Scholar
  164. 164.
    McSweeney PA, Wagner JL, Maloney DG, Radich H, Shizuru J, Bensinger WIea. Outpatient PBSC allografts using immunosuppression with low-dose TBI before and cyclosporine (CSP) and mycophenolate mofetil (MMF) after transplant. Blood 1998;92(Suppl 1):519a.Google Scholar
  165. 165.
    McSweeney PA, Storb R. Mixed chimerism: preclinical studies and clinical applications. Biol Blood Marrow Transplant 1999;5(4):192–203.PubMedCrossRefGoogle Scholar
  166. 166.
    Spitzer TR, McAfee SL, Sackstein R, Toh HC, Saidman S, Weymouth Dea. Induction of mixed chimerism and potent anti-tumor responses following non-myeloablative conditioning therapy and HLAmatched and mismatched donor bone marrow transplantation (BMT) for refractory hematologic malignancies (HM). Blood 1998;92(Suppl 11):519a.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Januario E. Castro
  • Edward D. Ball

There are no affiliations available

Personalised recommendations