Skip to main content

The EMAX and the PVA Concept

  • Chapter
  • 68 Accesses

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 10))

Abstract

In search for a ventricular index of left ventricular contractility which should be independent of preload and afterload as much as possible (see also Chapter III), Suga and Sugawa in 1974 [1] developed the Emax concept (end-systolic pressure-volume ratio) which was based on the time-varying elastance theory of ventricular contraction. This theory can be best described by a spring as demonstrated in Figure 1: at end-diastole (Figure 1A), the thin spring symbolizes the compliant chamber wall, i.e., elastance is low. At end-systole, the thick spring symbolizes the stiffened chamber wall, i.e., elastance has increased and has become maximum (Figure 1B).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suga H, Sagawa K: Instantaneous pressure-volume relationships and their ratio in the excised supported canine left ventricle. Circ Res 1974;35:117–126

    Article  PubMed  CAS  Google Scholar 

  2. Suga H: Ventricular energetics. Physiol Rev 1990;70:217–277

    Google Scholar 

  3. Suga H, Sagawa K, Shonkas AA: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973;32:314–322

    Article  PubMed  CAS  Google Scholar 

  4. Suga H, Sagawa K: Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 1974;35:117–126

    Article  PubMed  CAS  Google Scholar 

  5. Suga H, Hayashi T, Shirahata M: Ventricular systolic pressure volume area as predictor of cardiac oxygen consumption. Am J Physiol 1981;240:H39–44

    PubMed  CAS  Google Scholar 

  6. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y: Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure-volume area in canine left ventricles. Circ Res 1983;53:306–318

    Article  PubMed  CAS  Google Scholar 

  7. Suga H, Takaki M, Matsubara H, Goto Y: Energy costs of PVA and E.: Constancy and Variability. In: Cardiac Energetics: From E. to pressure-volume area. Eds.: LeWinter MM, Suga H, Watkins WM. Kluwer Academic Publishers 1995, pp 1–15

    Chapter  Google Scholar 

  8. Ohgoshi Y, Goto Y, Futaki S, Yaku H, Kawaguchi 0, Suga H: Increased oxygen cost of contractility in stunned myocardium of dog. Circ Res 1991;69:975–988

    Article  PubMed  CAS  Google Scholar 

  9. Hata K, Goto Y, Kawagushi 0, Takasago T, Saeki A, Nishioka T, Suga H: Hypercapnic acidosis increases oxygen cost of contractility in the dog left ventricle. Am J Physiol 1994;266:H730–H740

    PubMed  CAS  Google Scholar 

  10. Goto Y, Slinker BK, LeWinter MM: Decreased contractile efficiency and increased nonmechanical energy cost in hyperthyroid rabbit heart: relation between 02 consumption and systolic pressure-volume area or force-time integral. Circ Res 1990;66:999–1011

    Article  PubMed  CAS  Google Scholar 

  11. Suga H, Tanaka N, Ohgoshi Y, Saeki Y, Nakanishi T, Futaki S, Yaku H, Goto Y: Hyperthyroid dog left ventricle has the same oxygen consumption versus pressure-volume area (PVA) relation as euthyroid dog. Heart Vessels 1991;6:71–83

    Article  PubMed  CAS  Google Scholar 

  12. Goto Y, Yaku H, Ohgoshi Y, Futaki S, Kawaguchi 0, Hata K, Takasago T, Saeki A, Suga H: Left ventricular mechanics and energetics in dogs with pacing-induced heart failure. Circulation 1991;84 (Suppl II):0379

    Google Scholar 

  13. Wolff MR, DeTombe PP, Harasawa Y, Burkhoff D, Hunter WC, Gerstenblith G, Kass DA: Energetics of the failing heart: Greater chemomechanical efficiency but increased inotropic cost. Circulation 1991;84 (Suppl II):0378

    Google Scholar 

  14. Burkhoff D et al: Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological overload. Am J Physiol 1991;60:H569–H578

    Google Scholar 

  15. Burkhoff et al: Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol 1987;21:H1218–H1227

    Google Scholar 

  16. Suga H, Goto Y, Hata K, et al: Constant efficiency versus variable economy of cardiac contraction. Jpn Heart J 1992;33:213–227

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holubarsch, C.J.F. (2002). The EMAX and the PVA Concept. In: Mechanics and Energetics of the Myocardium. Basic Science for the Cardiologist, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0879-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0879-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5284-6

  • Online ISBN: 978-1-4615-0879-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics