Gene Expression Profile in Response to Chromium-Induced Cell Stress in A549 Cells

  • Jianping Ye
  • Xianglin Shi
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 34)


Chromium (Cr) is a trace element required for life. Biological activities of Cr are complicated and remain to be fully investigated. It is known that the valence of Cr plays an important role in the biological activities of Cr. For example, Cr (VI) is classified as a metal carcinogen [1]butCr (III) is widely used as a nutritional supplement [2, 3]. Establishment of a gene expression profile for Cr-induced cellular response is necessary to facilitate investigation of the biological activities of Cr. In the present study, a large-scale gene expression analysis was conducted using RNA of human lung epithelial cells afterin vitroexposure to Cr (VI). Utilizing high-density oligonucleotide arrays representing 2400 genes, we observed that expression of 150 genes was up-regulated, and that of 70 genes were down-regulated by Cr (VI). Functional analysis of these responsive genes led to an outline of potential biological activities of Cr in six aspects. The gene expression profile reveals that Cr may involves in redox stress, calcium mobilization, energy metabolism, protein synthesis, cell cycle regulation and carcinogenesis in the cell. The results provide a critical clue for understanding molecular mechanisms of the biological activities of Cr. (Mol Cell Biochem222:189-197, 2001)

Key words:

chromium (VI) gene chip redox stress cell cycle regulation carcinogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi X, Chiu A, Chen CT, Halliwell B, Castranova V, Vallyathan V: Reduction of chromium (VI) and its relationship to carcinogenesis. J Toxicol Environ Health, Part B, Crit Rev 2: 87–104, 1999Google Scholar
  2. 2.
    Anderson RA: Chromium as an essential nutrient for humans. Reg Toxicol Pharmacol 26: S35¨CS41, 1997CrossRefGoogle Scholar
  3. 3.
    Jeejeebhoy KN: The role of chromium in nutrition and therapeutics and as a potential toxin. Nutr Rev 57: 329–335, 1999PubMedCrossRefGoogle Scholar
  4. 4.
    Ye J, Wang S, Leonard SS, Sun Y, Butterworth L, Antonini J, Ding M, Rojanasakul Y, Vallyathan V, Castranova V, Shi X: Role of reactive oxygen species and p53 in chromium (Vt)-induced apoptosis. J Biol Chem 274: 34974–34980,1999PubMedCrossRefGoogle Scholar
  5. 5.
    Ye J, Zhang X, Young HA, Mao Y, Shi X: Chromium (V1)-induced nuclear factor-kappa B activation in intact cells via free radical reactions. Carcinogenesis 16: 2401–2405,1995PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson RA: Chromium in the prevention and control of diabetes, Diabetes Metab 26: 22–27, 2000PubMedGoogle Scholar
  7. 7.
    Kozal Mi, Shah N, Shen N, Yang R, Fucini R, Merigan TC, Richman DD, Morris D, Hubbell E, Chee M, Gingeras TR: Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucicotide arrays. Nature Med 2: 753–759,1996CrossRefGoogle Scholar
  8. 8.
    Lee CK, Klopp RG, Weindruch R, Prolla TA: Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1393, 1999CrossRefGoogle Scholar
  9. 9.
    Friedman J, Shabtai F, Levy LS, Djaldetti M: Chromium chloride induces chromosomal aberrations in human lymphocytes via indirect action. Mutat Res 191: 207–210, 1987PubMedCrossRefGoogle Scholar
  10. 10.
    Orr WC, Sohal RS: Extension of life-span by overexpression of superoxide dismutase and catalase inDrosophila melanogasler.Science 263: 1128–1130,1994PubMedCrossRefGoogle Scholar
  11. 11.
    Andrews GK: Regulation of metallothionein gene expression. Prag Food Nutr Sci 14: 193–258, 1990Google Scholar
  12. 12.
    Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W: CIoned transcription factorMTF-1 activates the mouse mctallothioncin 1 promoter. Embo J 12: 1355–1362,1993PubMedGoogle Scholar
  13. 13.
    Thoma F: Light and dark in chromatin repair: Repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. Embo J 18: 6585–6598,1999PubMedCrossRefGoogle Scholar
  14. 14.
    Todo T, Ryo H, Yamamoto K, Toh H, lnui T, Ayaki H, Nomura T, Ikenaga M: Similarity among the Drosophila (6–4) photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272: 109–112,1996PubMedCrossRefGoogle Scholar
  15. 15.
    Shimada H, ShiaoYH, Shibata M, Waalkes MP: Cadmium suppresses apoptosis induced by chromium. J Toxicol Environ Health 54: 159–168, 1998CrossRefGoogle Scholar
  16. 16.
    Singh J, Carlisle DL, Pritchard DE, Patiemo SR: Chromium-induced genotoxicity and apoptosis: Relationship to chromium careinogenesis. Oncol Rep 5: 1307¨C 1318 (review), 1998Google Scholar
  17. 17.
    Bagchi D, Joshi SS, Bagchi M, Balmoori J, Benner El, Kuszynski CA, Stohs Si: Cadmium-and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cells. J Biochem Mol Toxicol 14: 33–41,2000PubMedCrossRefGoogle Scholar
  18. 18.
    Carlisle DL, Pritchard DE, SinghJPatiemo SR: Chromium (VI) induces p53-dependent apoptosis in diploid human lung and mouse dermal fibroblasts. Mal Carcinogen 28: 111–118, 2000CrossRefGoogle Scholar
  19. 19.
    Blankenship Li, Manning FC, Orenstein JM, Patiemo SR: Apoptosis is the mode of cell death caused by carcinogenic chromium. Toxicol Appl Pharmacol 126: 75–83, 1994CrossRefGoogle Scholar
  20. 20.
    Nemani M, Linares-Cruz G, Bruzzoni-Giovanelli H, Roperch JP, Tuynder M, Bougueleret L, Cherif D, Medhioub M, Pasturaud P, Alvaro V, der Sarkissan H, Cazes L, Le Paslier D, Lc Gall I, Israeli D, Dausset J, Sigaux F, Chumakov I, Oren M, Calvo F, AmsonRB Cohen D, Telerman A: Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc Nat Acad Sci USA 93. 9039–9042, 1996PubMedCrossRefGoogle Scholar
  21. 21.
    Matsuzawa S, Takayama S, Froesch BA, Zapata JM, Reed JC: p53-inducible human homologue of Drosophila seven in absentia (Siab) inhibits cell growth: Suppression by BAG-1. Embo J 17: 2736–2747, 1998PubMedCrossRefGoogle Scholar
  22. 22.
    Schulte TW, Akinaga S, Murakata T, Agatsuma T, Sugimoto S, Nakano H, Lee YS, Simen BB, Argon Y, Felts S, Taft DO, Neckers LM, Sharma SV: Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol 13: 1435–1448, 1999PubMedCrossRefGoogle Scholar
  23. 23.
    Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH: Anew member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mal Cell Biol 16: 4691–4699,1996Google Scholar
  24. 24.
    Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U: ATF3 and stress responses. Gene Exp 7: 321–335, 1999Google Scholar
  25. 25.
    Guerini D, Klee CB: Cloning of human calcineurin A: Evidence for two isozymes and identification of a polyproline structural domain. Proc Natl Acad Sci USA 86: 9183–9187, 1989PubMedCrossRefGoogle Scholar
  26. 26.
    Haendler B, Hofer-Warbinek R, Hofer E: Complementary DNA for human T-cell cyclophilin. Embo.1 6: 947–950, 1987Google Scholar
  27. 27.
    Liu J, Albers MW, Wandless TJ, Luan S, Alberg DG, Belshaw P.1, CohenPMacKintosh C, Klee CB, Schreiber SL: Inhibition of T cell signaling by immunophilin-ligand complexes correlates with Ioss of calcineurin phosphatase activity. Biochemistry 31: 3896–3901, 1992PubMedCrossRefGoogle Scholar
  28. 28.
    Hu Z, Bonifas JM, Beech J, Bench G, ShigiharaT, Ogawa H, Ikeda S, Mauro T, Epstein EH Jr: Mutations in ATP2C I, encoding a calcium pump, cause Hailcy-Hailey disease. Nat Genet 24: 61–665, 2000PubMedCrossRefGoogle Scholar
  29. 29.
    Bouchard C, Despres JP, Tremblay A: Genetics of obesity and human energy metabolism. Proc Nutr Soc 50: 139–147, 1991PubMedCrossRefGoogle Scholar
  30. 30.
    Boulanger BR, Milzman DP, Rodriguez A: Obesity. Crit Care Clin 10: 613–6622, 1994PubMedGoogle Scholar
  31. 31.
    Zhang Y, Procnca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432, 1994PubMedCrossRefGoogle Scholar
  32. 32.
    Gong DW, Bi S, Pratley RE, Weintraub BD: Genomic structure and promoter analysis of the human obese gene. J Biol Chem 271: 3971–3974, 1996PubMedCrossRefGoogle Scholar
  33. 33.
    Kelly DP, Kim JJ, Billadello JJ, Hainline BE, Chu TW, Strauss AW: Nucleotide sequence of medium-chain acyi-CoA dehydrogenase mRNA and its expression in enzyme-deficient human tissue. Pmc Natl Acad Sci USA 84: 4068–4072, 1987CrossRefGoogle Scholar
  34. 34.
    Ptasznik A, Gewirtz AM: Crosstalk between G protein-coupled receptors and tyrosine kinase signaling: Src take centre stage. Arch Immunol Ther Exp 48: 27–30, 2000Google Scholar
  35. 35.
    Diverse-Pierluissi M, Remmers AE, Neubig RR, Dunlap K: Novel form of crosstalk between G protein and tyrosine kinase pathways. Proc Nat Acad Sci USA 94: 5417–5421, 1997PubMedCrossRefGoogle Scholar
  36. 36.
    Gianfrancesco F, Esposito T, Montanini L, Ciccodicola A, Mumm S, Mazzarella R, Rao E, Giglio S, Rappold G, Forabosco A: A novel pseudoautosomal gene encoding a putative GTP-binding protein resides in the vicinity of the Xp/Yp telomere. Hum Mol Genet 7: 407–414, 1998PubMedCrossRefGoogle Scholar
  37. 37.
    Partanen J, Armstrong E, Bergman M, Makela TP, Hirvonen H, Huebner K, Alitalo K: cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene 6: 2013–2018, 1991PubMedGoogle Scholar
  38. 38.
    Sakano S, Iwama A, Inazawa J, Ariyama T, Ohno M, Suda T: Molecular cloning of a novel non-receptor tyrosine kinase, HYL (hematopoietic consensus tyrosine-lacking kinase). Oncogene 9: 1155–1161, 1994PubMedGoogle Scholar
  39. 39.
    Livi GP, Kmetz P, McHale MM, Cieslinski LB, Sathe GM, Taylor DP, Davis RL, Torphy TJ, Balcarek JM: Cloning and expression of eDNA for a human low-Km, rolipram-sensitive cyclic AMP phosphodiesterase. Mol Cell Biol 10: 2678–2686, 1990PubMedGoogle Scholar
  40. 40.
    Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, ShyuAB, Muller M, Gaestel M, Resch K, Hohmann H: The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilisation via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J 18: 4969–4980,1999PubMedCrossRefGoogle Scholar
  41. 41.
    Uddin S, Majchrzak B, Woodson J, Arunkumar P, Alsayed Y, Pine R, Young PR, Fish EN, Platanias LC: Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem 274: 30127–30131, 1999PubMedCrossRefGoogle Scholar
  42. 42.
    Fisher EM, Beer-Romero P, Brown LG, Ridley A, McNeil JA, Lawrence JB, Willard HF, Bieber FR, Page DC: Homologous ribosomal protein genes on the human X and Y chromosomes: Escape from X inactivation and possible implications for Turner syndrome. Cell 63: 1205–1218,1990PubMedCrossRefGoogle Scholar
  43. 43.
    Si K, Das K, Maitra U: Characterization of multiple mRNAs that encode mammalian translation initiation factor 5 (eIF-5). J Biol Chem 271: 16934–16938, 1996PubMedCrossRefGoogle Scholar
  44. 44.
    Cruzen ME, Arfin SM: Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to theEscherichia corsand yeast enzymes. J Biol Chem 266: 9919–9923, 1991PubMedGoogle Scholar
  45. 45.
    Ishii T, Itoh K, Sato H, Bannai S: Oxidative stress-inducible proteins in macrophages. Free Rad Res 31: 351–355, 1999CrossRefGoogle Scholar
  46. 46.
    Pancre V, Pierce RJ, Fournier F, Mehtali M. Delanoyc A, Capron A, Auriault C: Effect ofubiquitin on platelet functions: Possible identity with platelet activity suppressive lymphokine (PASL). EurJ Immunol 21: 2735–2741,1991CrossRefGoogle Scholar
  47. 47.
    Toth MJ, Huwyier L: Molecular cloning and expression of the cDNAs encoding human and yeast mevalonate pyrophosphate decarboxylase. J Biol Chem 271: 7895–7898, 1996PubMedCrossRefGoogle Scholar
  48. 48.
    Guan KL, Jenkins CW, Li Y, O’Keefe CL, Noh S, Wu X, Zariwala M, Matera AG, Xiong Y: Isolation and characterization of pl91NK4d, a pl6-related inhibitor specific to CDK6 and CDK4. Mol Biol Cell 7: 57–70, 1996PubMedGoogle Scholar
  49. 49.
    Hirai H, Roussel MF, Kato JY, Ashmun RA,Sherr CJ: Novel INK4 proteins, p19 and pig, are specific inhibitors of the cycIin D-dependent kinases CDK4 and CDK6. Mol Cell Biel 15: 2672–2681, 1995Google Scholar
  50. 50.
    Fattaey AR, Helin K, Dembski MS, Dyson N, Harlow E, Vuocolo GA, Hanobik MG, Haskell KM, Oliff A, Defeo-Jones D, Jones ARE: Characterization of the retinoblastoma binding proteins RBPI and RBP2. Oncogene 8: 3149–3156, 1993PubMedGoogle Scholar
  51. 51.
    Vogt T, Kroiss M, McClelland M, Gruss C, Becker B, BosserhoffAK, Rumpler G, Bogenrieder T, Landthaler M, Stolz W: Deficiency of a novel retinoblastoma binding protein 2-homolog is a consistent feature of sporadic human melanoma skin cancer. Lab Invest 79: 1615–1627, 1999PubMedGoogle Scholar
  52. 52.
    Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, Beach D: CDC25 phosphatases as potential human oncogenes. Science 269: 1575–1577, 1995PubMedCrossRefGoogle Scholar
  53. 53.
    Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W, Hoffmann I: The cdc25B phosphatase is essential for the G21M phase transition in human cells. I Cell Sci 111: 2445–2453, 1998Google Scholar
  54. 54.
    Forrest AR, McCormack AK, DcSouza CP, Sinnamon JM, Tonks ID, Hayward NK, Ellem KA, Gabrielli BG: Multiple splicing variants of cdc25B regulate G2/M progression. Biochern Biophys Res Commun 260:510–515,1999CrossRefGoogle Scholar
  55. 55.
    Kiyono T, Fujita M, Hayashi Y, Ishibashi M: Cloning of a cDNAencodinga human homologue of CDC47, a member of the MCMfamily.Biochim Biophys Acta 1307: 31–34, 1996PubMedCrossRefGoogle Scholar
  56. 56.
    Fujita M, Kiyono T, Hayashi Y, Ishibashi M: hCDC47, a human member of the MCM family. Dissociation of the nucleus-bound form during S phase. J Biol Chem 271: 4349–4354, 1996PubMedCrossRefGoogle Scholar
  57. 57.
    Meisner H, Heller-Harrison R, Buxton J, Czech MP: Molecular cloning of the human casein kinase II alpha subunit. Biochemistry 28: 4072–4076, 1989PubMedCrossRefGoogle Scholar
  58. 58.
    Stohs Si, Bagchi D: Oxidative mechanisms in the toxicity ofinetal ions. Free Rad Biol Med 18: 321–336, 1995CrossRefGoogle Scholar
  59. 59.
    Hoyal CR, Giron-Calle J, Forman HJ: The alveolar macrophage as a model of calcium signaling in oxidative stress. J Toxicol Environ Health. Part B, Crit Rev l: 117–134, 1998Google Scholar
  60. 60.
    Vallyathan V, Shi X: The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Persp 105(suppl 1): 165–177, 1997CrossRefGoogle Scholar
  61. 61.
    Buzard GS, Kasprzak KS: Possible roles of nitric oxide and redox cell signaling in metal-induced toxicity and carcinogenesis: A review. J Environ Pathol Toxicol Ducal 19: 179–199, 2000Google Scholar
  62. 62.
    Stadtman ER, Berlett BS: Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30: 225–243, 1998PubMedCrossRefGoogle Scholar
  63. 63.
    Anderson RA: Effects of chromium on body composition and weight loss. Nutr Rev 56: 266–270, 1998PubMedCrossRefGoogle Scholar
  64. 64.
    Xu J, Bubley GJ, Detrick B, Blankenship LJ, Patierno SR: Chromium (V1) treatment of normal human lung cells results in guanine-specific DNA polymerase arrest, DNA-DNA cross-links and S-phase blockade of cell cycle. Carcinogenesis 17: 1511–1517. 1996PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jianping Ye
    • 1
  • Xianglin Shi
    • 1
  1. 1.Pathology and Physiology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and HealthMorgantownUSA

Personalised recommendations