Differential zinc and DNA binding by partial peptides of human protamine HP2

  • Wojciech Bal
  • Marcin Dyba
  • Zbigniew Szewczuk
  • Małgorzata Jeżowska-Bojczuk
  • Jan Lukszo
  • Gayatri Ramakrishna
  • Kazimierz S. Kasprzak
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 34)


The Zn(II) binding by partial peptides of human protamine IIP2: HP2]5;HP2:_25, HP220, HP237-07 and HP243_57was studied by circular dichroism (CD). Precipitation of a 20-mer DNA by these partial peptides and the effects of Zn(II) thereon were investigated using polyacrylamide gel electrophoresis (GE). The results of this study suggest that reduced HP2 (thiol groups intact) can bind Zn(II) at various parts of the molecule. In the absence of DNA, the primary Zn(II) binding site in reduced HP2 is located in the 37-47 sequence (involving Cys-37, His-39, His-43, and Cys-47), while in the presence of DNA, the strongest Zn(II) binding is provided by sequences 12-22 (by His-12, Cys-13, His-19, and His-22) and 43-57 (His-43, Cys-47, Cys-53, and His-57). In its oxidized form, HP2 can bind zinc through His residues of the 7-22 sequence. Zn(II) markedly enhances DNA binding by all partial peptides. These findings suggest that Zn(II) ions may be a regulatory factor for sperm chromatin condensation processes. (Mol Cell Biochem 222: 97-106, 2001)

Key words

protamine P2 protamine peptides DNA zinc protamine-zinc binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKay DJ, Renaux BS, Dixon GH: Human sperm protamines. Amino-acid sequences of two forms ofprotamine P2. Eur J Biochem 156: 58, 1986CrossRefGoogle Scholar
  2. 2.
    Ammer H, Henschen A, Lee CI-I: Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol Chem Happe-Seylcr 367: 515–522, 1986CrossRefGoogle Scholar
  3. 3.
    Pogany GC, Corzett M, Weston S, Balhorn R: DNA and protein content of mouse sperm. Exp Cell Res 136: 127–136, 1981PubMedCrossRefGoogle Scholar
  4. 4.
    Balhorn R, Reed S, Tanphaichitr N: Aberrant protamine llprotamine2 ratios in sperm of infertile human males. Experientia 44: 52–55, 1988PubMedCrossRefGoogle Scholar
  5. 5.
    Bjorndahl L, Kvist U: Influence of seminal vesicular fluid on the zinc content of human sperm chromatin. Int J Androl 13: 232–237, 1990PubMedCrossRefGoogle Scholar
  6. 6.
    Bench G, Corzett MH, Kramer CE, Grant PG, Balhorn R: Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol Reprod Dev 56: 512–519, 2000PubMedCrossRefGoogle Scholar
  7. 7.
    Gatewood JM, Schroth GP, Schmid CW, Bradbury EM: Zinc-induced secondary structure transitions in human sperm protamines. J Biol Chem 265: 20667–20672, 1990PubMedGoogle Scholar
  8. 8.
    Bianchi F, Rousseaux-Prevost R, Sautiere P, Rousseaux J: P2 protamines from human sperm are zinc-finger proteins with one Cys2/His2 motif. Biochem Biophys Res Commun 182: 540–547, 1992PubMedCrossRefGoogle Scholar
  9. 9.
    Quintanilla-Vega B, Hoover DJ, Bal W, Silbergeld E, Waalkes MP, Anderson LD: Lead interactionwithhuman protamine HP2 as a mechanism of male reproductive toxicity. Chem Res Toxicol 13: 594–600, 2000PubMedCrossRefGoogle Scholar
  10. 10.
    Kozlowski H, Bal W, Dyba M, Kowalik-Jankowska T: Specific structure-stability relations in metallopeptides. Coord Chem Rev 184: 319–346, 1999CrossRefGoogle Scholar
  11. 11.
    Bal W, Jetowska-Bojczuk M, Kasprzak KS: Binding ofnickel(II) and copper(II) to the N-terminal sequence of human protamine HP2. Chem Res Toxicol 10: 906–914, 1997PubMedCrossRefGoogle Scholar
  12. 12.
    Bal W, Lukszo J, Kasprzak KS: Mediation of oxidative DNA damage by nickel(II) and copper(11) complexes with the N-terminal sequence of human protamine HP2. Chem Res Toxicol 10: 915–921, 1997PubMedCrossRefGoogle Scholar
  13. 13.
    Liang R, Senturker S, Shi X, Bal W, Dizdaroglu M, Kasprzak KS: Effects of Ni(II) and Cu(II) on DNA interaction with the N-terminal sequence of human protamine P2: Enhancement of binding and mediation of oxidative DNA strand scission and base damage. Carcinogenesis 20: 893–898, 1999PubMedCrossRefGoogle Scholar
  14. 14.
    Bal W, Wójcik J, Maciejczyk M, Grochowski P, Kasprzak KS: Induction of a secondary structure in the N-terminal pentadecapeptide of human protamine HP2 through Ni(II) coordination. An NMR study. Chem Res Toxicol 13: 823–830, 2000PubMedCrossRefGoogle Scholar
  15. 15.
    Bianchi F, Rousseaux-Prevost R, Bailly C, Rousseaux J: Interaction of human P l and P2 protamines with DNA, Biochem Biophys Res Commun 201: 1197–1204, 1994PubMedCrossRefGoogle Scholar
  16. 16.
    Krizek BA, Merkte DL, Berg JM: Ligand variation and metal ion binding specificity in zinc finger peptides. Inorg Chem 32: 937–940, 1993CrossRefGoogle Scholar
  17. 17.
    Berg JM, Godwin HA: Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26: 357–371, 1997PubMedCrossRefGoogle Scholar
  18. 18.
    Mcicnhofer J, Waki M, Heimer EP, Lambros TJ, Makofske RC, Chang CD: Solid phase synthesis without repetitive hydrolysis. Preparation of leucylalanyl-glycyl-valine using 9-fluorenylmethyloxy-carbonylamino acids. Int J Peptide Prot Res 13: 35–42, 1979Google Scholar
  19. 19.
    Irving H, Miles MG, Pettit LD: A study of some problems in determining the stoichiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal Chim Acta 38: 475–488, 1967CrossRefGoogle Scholar
  20. 20.
    Gans P, Sabatini A, Vacca A: SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. 1 Chem Soc Dalton Trans 1195–1199, 1985Google Scholar
  21. 21.
    Lees WJ, Whitesides GM: Equilibrium constants for thiol-disulfide interchange reactions: Acoherent, corrected set. I Org Chem 58: 642–647, 1993CrossRefGoogle Scholar
  22. 22.
    Kreźel A, LeŚnick W, Jeaowska-Bojczuk M, Miynarz P, Brasuri J, Kozlowski H, Bal W: Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J Inorg Biochem 84: 77–88, 2001CrossRefGoogle Scholar
  23. 23.
    Banerjea D, Kaden T, Sigel H: Enhanced stability of ternary complexes in solution through the participation ofheteroaromatic N bases. Cornparison of the coordination tendency of pyridine, imidazole, ammonia, acetate and hydrogen phosphate toward metal ion nitrilotriacetate complexes. Inorg Chem 20: 2586–2590, 1981CrossRefGoogle Scholar
  24. 24.
    Vu HM, Minch Mi: a-(Ac)AKRHRKV, a model of the histone H4 amino terminus, uses an unprotonated histidine in phosphate binding. J Pep Res 51: 162–170, 1998CrossRefGoogle Scholar
  25. 25.
    Woody RW: Circular dichroism and conformation of unordered peptides. Adv Biophys Chem 2: 37–79, 1992Google Scholar
  26. 26.
    Roehm PC, Berg JM: Sequential metal binding by the RING finger domain of BRCAt. Biochemistry 36: 10240–10245, 1997PubMedCrossRefGoogle Scholar
  27. 27.
    Basile LA, Coleman JE: Optical activity associated with the sulfur to metal charge transfer bands of Zn and Cd GAL4. Prot Sci 1: 617–6624, 1992.CrossRefGoogle Scholar
  28. 28.
    Vasák M, Kägi JHR, Hill HAO: Zinc(1I), cadmiurn(II) and mercury(II) thiolate transitions in metallothionein. Biochemistry 20: 2852–2856, 1981PubMedCrossRefGoogle Scholar
  29. 29.
    Worthington MT, Amann BT, Nathans D, Berg JM: Metal binding properties and secondary structure of the zinc-binding domain of Nup475. Proe Natl Acad Sci USA 93: 13754–13759, 1996CrossRefGoogle Scholar
  30. 30.
    Posewitz MC, Wilcox DE: Properties of the Sp1 zinc finger 3 peptide: Coordination chemistry, redox reactions, and metal binding competition with metallothionein. Chem Res Toxicol 8: 1020–1028, 1995PubMedCrossRefGoogle Scholar
  31. 31.
    Predki PF, Sarkar B: Effect of replacement of `zinc finger’ zinc on estrogen receptor DNA interactions. J Biol Chem 267: 5842–5846, 1992PubMedGoogle Scholar
  32. 32.
    Fita I, Campos JL, Puigjaner LC, Subirana, JA: X-ray diffraction study of DNA complexes with arginine peptides and their relation to nucleoprotamine structure. J Mol Biol 167: 157–177, 1983PubMedCrossRefGoogle Scholar
  33. 33.
    Balhorn R: A model for the structure of chromatin in mammalian sperm. J Cell Biol 93: 298–305, 1982PubMedCrossRefGoogle Scholar
  34. 34.
    Hud NV, Milanovich FP, Balhom R: Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopy. Biochemistry 33: 7528–7535, 1994PubMedCrossRefGoogle Scholar
  35. 35.
    Wallace TJ, Schriesheim A: Solvent effects in the base-catalyzed oxidation of mercaptans with molecular oxygen. J Org Chem 27: 1514–1516, 1962CrossRefGoogle Scholar
  36. 36.
    Kvist U: Importance of spermatozoa) zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol Scand I09: 79–84, 1980CrossRefGoogle Scholar
  37. 37.
    Bjorndahl L, Kjellberg S, Romans GM, Kvist U: The human sperm nucleus takes up zinc at ejaculation. lnt J Androl 9: 77–80,1986CrossRefGoogle Scholar
  38. 38.
    Kvist U, Bjorndahl L, Kjellberg S: Sperm nuclear zinc, chromatin stability, and male fertility. Scanning Microsc 1: 241–1247,1987Google Scholar
  39. 39.
    Kvist U, Kjellberg S, Bjorndahl L, Soufir JC, Arver S: Seminal fluid from men with agenesis of the Wolffïan ducts: Zinc-binding properties and effects on sperm chromatin stability. lot J Androl 13: 245–252, 1990CrossRefGoogle Scholar
  40. 40.
    Balhorn R, Corzett M., Mazrimas JA: Formation of intraprotamine disulfidesin vitro.Arch Biochem Biophys 296: 384–393, 1992PubMedCrossRefGoogle Scholar
  41. 41.
    Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhom R, Bradbury EM: Well-defined genome architecture in the human sperm nucleus. Chromosoma 103: 577–590, 1995PubMedCrossRefGoogle Scholar
  42. 42.
    Allen MJ, Bradbury EM, Balhorn R: AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res 25: 2221–2226, 1997PubMedCrossRefGoogle Scholar
  43. 43.
    Brewer, LR, Corzett M, Balhorn R: Protamine-induced condensation and decondensation of the same DNA molecule. Science 286: 120–123, 1999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Wojciech Bal
    • 1
    • 2
  • Marcin Dyba
    • 1
  • Zbigniew Szewczuk
    • 1
  • Małgorzata Jeżowska-Bojczuk
    • 1
  • Jan Lukszo
    • 3
  • Gayatri Ramakrishna
    • 2
  • Kazimierz S. Kasprzak
    • 2
  1. 1.Faculty of ChemistryUniversity of WroclawWroclawPoland
  2. 2.Laboratory of Comparative CarcinogenesisNational Cancer Institute at FrederickFrederickUSA
  3. 3.Peptide Analysis and Synthesis Unit, Research Technology BranchNational Institute of Allergy and Infectious DiseasesRockvilleUSA

Personalised recommendations