Biochemical Reaction Networks

  • Jens Nielsen
  • John Villadsen
  • Gunnar Lidén


Evolution has resulted in a complex metabolic network to ensure the proper function of living cells. In many biotech processes the metabolic networks of living cells are exploited for production of desired compounds. As discussed in Chapter 2 the metabolism can roughly be divided into catabolism and anabolism. The catabolism ensures supply of Gibbs free energy in the form of high-energy phosphate bonds in ATP, co-factors like NADH and NADPH, and a set of 12 precursor metabolites — everything that is needed for biosynthesis of cell mass. In Chapter 3 we lumped the myriad of reactions in the metabolic network into a single overall reaction — the black box model. This is very useful when the aim is to check the overall balances of carbon flowing in and out of the cell, but it does not supply any information about the processes occurring inside the cells. Clearly the complexity increases when intracellular reactions are considered in the analysis, but as will be discussed in this chapter there is a constant balancing of the formation and consumption of intracellular metabolites, and this imposes a large number of constraints on the fluxes through the different branches of the metabolic network. Thus, even though the complexity increases, the degrees of freedom do not necessarily increase, and expansion of the analysis to include intracellular reactions — in some cases lumped together into a few overall reactions — may in many cases be very useful. In this chapter we are going to look into the basic concepts of metabolic balancing (Section 5.1). In the rest of the chapter we will consider biochemical reaction models of increasing complexity — first simple models balanced only with respect to ATP, NADH and possibly NADPH (Section 5.2); thereafter simple metabolic networks where the metabolic network is lumped into a few overall pathway routes (Section 5.3), and finally more complete metabolic networks that permit a deeper analysis of the activities in the different branches of the metabolic network at varying growth conditions (Section 5.4).


Specific Growth Rate Metabolic Network Shadow Price Flux Vector Stoichiometric Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiba, S., Matsuoka, M. (1979) Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnology and Bioengineering. 21, 1373-1386.CrossRefGoogle Scholar
  2. Albers, E., Larsson, C., Liden, G., Niklasson, C., Gustafsson, L. (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl. Environ. Microbiol. 62, 3187-3195Google Scholar
  3. Albers, E., Liden, G., Larsson, C, Gustafsson, L. (1998) Anaerobic redox balance and nitrogen metabolism in Saccharomyces cerevisiae. Rec. Res. Devel. Microbiol. 2, 253-279Google Scholar
  4. Bauchop, T., Esden, S. R. (1960) The growth of microorganisms in relation to their energy supply. J. Gen. Microb. 23, 35-43.CrossRefGoogle Scholar
  5. Benthin, S. (1992) Growth and Product Formation of Lactococcus cremoris, Ph.D. thesis, Department of Biotechnology, Technical University of Denmark, LyngbyGoogle Scholar
  6. Benthin, S., Nielsen, J., Villadsen, J. (1991) Characterization and application of precise and robust flow-injection analysers for on-line measurements during fermentations. Anal. Chim. Acta 247,45-50.CrossRefGoogle Scholar
  7. Benthin, S., Schulze, U., Nielsen, J., Vlladsen, J. (1994) Growth energetics of Lactococcus cremoris FD1 during energy-, carbon- and nitrogen-limitation in steady state and transient cultures. Chem. Eng. Sci. 49, 589-609.CrossRefGoogle Scholar
  8. Brown, W. V., Collins, E. B. (1977) End product and fermentation balances for lactis Streptococci grown aerobically on low concentrations of glucose. Appl. Environ. Microbiol. 59, 3206-3211.Google Scholar
  9. Christensen, B., Nielsen, J. (1999) Metabolic network analysis — powerful tool in metabolic engineering. Adv. Biochem. Eng./Biotechnol. 66, 209-231CrossRefGoogle Scholar
  10. Christensen, B., J. Nielsen, J. (2000) Metabolic network analysis on Penicillium chrysogenum using l3C-labelled glucose. Biotechnol. Bioeng., 68, 652-659CrossRefGoogle Scholar
  11. Christiansen, T., Nielsen, J. (2002) Growth energetics of an alkaline serine protease producing strain of Bacillus clausii during continuous cultivation. Bioproc. Biosystems Eng., in pressGoogle Scholar
  12. Emptage, M., Haynie, S., Laffend, L., Pucci, J., Whited, G. (2001). Process for the biotechnological production of 1,3 propane diol with high titer. US patent application No. PCT/US 00/22874; cited in WO (World Intellectual Property Organization) 01/12833Google Scholar
  13. Gombert, A. K., dos Santos, M. M., Christensen, B., Nielsen, J. (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae at different conditions of glucose repression. J. Bacteriol. 183, 1441-1451CrossRefGoogle Scholar
  14. van Gulik, W. M., Heijnen, J. J. (I995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48, 681-698CrossRefGoogle Scholar
  15. Henriksen, CM., and Nilsson, D. (2001) Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements. Appl. Microbiol. Biotechnol. 56, 767-775CrossRefGoogle Scholar
  16. Hempfling, W. P., Mainzer, S. E. (1975) Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J. Bacteriol. 123, 1076-1087.Google Scholar
  17. Herbert, D. (1959). Some principles of continuous culture. Recent Prog. Microb. 7, 381-396.Google Scholar
  18. Ingraham, J. L., Maaløe, O., & Neidhardt, F. C. (1983) Growth of the Bacterial Cell. Sunderland: Sinnauer Associated.Google Scholar
  19. Jørgensen, H. S., Nielsen, J., Villadsen, J., Mølgaard, H. (1995) Metabolic flux distributions in Penicillium chrysogenum duringfed-batch cultivations. Biotechnol. Bioeng. 46, 117-131CrossRefGoogle Scholar
  20. Liao, J. C., Hou, S.-Y., Chao, Y.-P. (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. ßioeng. 52, 129-140CrossRefGoogle Scholar
  21. Luedeking, R.& Piret, E. L. (1959a) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microb. Technol. Eng. 1, 393-412CrossRefGoogle Scholar
  22. Luedeking, R., Piret, E. L. (1959b) Transient and steady state in continuous fermentation. Theory and experiment. J. Biochem. Microb. Technol. Eng. 1,431-459CrossRefGoogle Scholar
  23. Major, N. C, Bull, A. T. (1985) Lactic acid productivity of a continuous culture of Lactobacillus delbrueckii. Biotechnol. Letters. 7,401-405.CrossRefGoogle Scholar
  24. Nielsen, J. (1997) Physiological Engineering Aspects of Penicillium chrysogenum. Singapore: World Scientific Publishing Co.Google Scholar
  25. Nissen, T.L., Schulze, U., Nielsen, J., Villadsen, J. (1997) Flux distributions in anaerobic, glucose limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143, 203-218CrossRefGoogle Scholar
  26. Otto, R., Sonnenberg, A. S. M., Veldkamp, H., Konings, W. N. (1980) Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc. Nat. Acad. Sci. 77, 5502-5506.CrossRefGoogle Scholar
  27. Oura, E. (1983) Biomass from carbohydrates. In Biotechnology, H. Dellweg, ed., Vol. 3,3-42. VCH Verlag, Weinheim, Germany.Google Scholar
  28. Papoutsakis, E. T. (1984). Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 26, 174-187CrossRefGoogle Scholar
  29. Pedersen, H., Carlsen, M., Nielsen, J. (1999). Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant strain of Aspergillus oryzae strain. Appl. Environ. Microbiol. 65, 11-19Google Scholar
  30. Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proc. Royal Soc. London. Series B 163, 224-231.CrossRefGoogle Scholar
  31. Pramanik, J., Keasling, J. D. (1997) Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-ratedependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398-421CrossRefGoogle Scholar
  32. Reardon, K. F., Scheper, T. H., and Bailey, J. E. (1987). Metabolic pathway rates and culture fluorescence in batch fermentations of Clostridium acetobutylicum. Biotechnol. Prog. 3, 153-167CrossRefGoogle Scholar
  33. Sauer, U., Hatzimanikatis, V., Hohmann, H. P., Manneberg, M., van Loon, A. P. G. M., Bailey, J. E. (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62, 3687-3696Google Scholar
  34. Schmidt, K., Carlsen, M., Nielsen, J., Villadsen, J. (1997) Modelling isotopmer distributions in biochemical networks Using isotopomer mapping matrices. Biotechnol. Bioeng. 55, 831 -840CrossRefGoogle Scholar
  35. Schmidt, K., Nielsen, J., Villadsen, J. (1999). Quantitative analysis of metabolic fluxes in E. coli, using 2 dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71, 175-190CrossRefGoogle Scholar
  36. Schuster, S., Dandekar, T., Fell, D. A. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. TIBTECH 17, 53-60CrossRefGoogle Scholar
  37. Schuster, S., Fell, D. A., Dandekar, T. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. 18, 326-332CrossRefGoogle Scholar
  38. Sonntag, K., Eggeling, L., de Graaf, A. A., Sahm, H. (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum — Quantification by l3C- and 1H-NMR spectroscopy. Eur. J. Biochem. 213, 1325-1331Google Scholar
  39. Stephanopoulos, G., Aristodou, A. & Nielsen, J. (1998). Metabolic Engineering. Principles and Methodologies. Academic Press,Google Scholar
  40. San Diego Stouthamer, A. H. (1979) The search for correlation between theoretical and experimental growth yields. In InternationalGoogle Scholar
  41. Review of Biochemistry: Microbial Biochemistry, Vol. 21, pp. 1-47. Edited by J. R. Quayle. Baltimore: University Park PressGoogle Scholar
  42. Stouthamer, A. H., Bettenhaussen, C. (1973) Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys.Acta 301, 53-70.CrossRefGoogle Scholar
  43. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M. & Reuss, M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55, 305-316CrossRefGoogle Scholar
  44. Vallino, J. J.,Stephanopoulos, G. (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng, 41, 633-646CrossRefGoogle Scholar
  45. Vallino, J. J., Stephanopoulos, G. (1994a) Carbon flux distributions at the pyruvate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol. Prog. 10, 320-326CrossRefGoogle Scholar
  46. Vallino, J. J.; Stephanopoulos, G. (1994b) Carbon flux distributions at the glucose-6-phosphate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol. Prog. 10, 327-334CrossRefGoogle Scholar
  47. Varma, A., Boesch, B.W., Palsson, B.O. (1993a) Stoichiometric interpretation of Escherichia coli glucose metabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465-2473Google Scholar
  48. Varma, A., Boesch, B. W., Palsson, B. O. (1993b). Biochemical production capabilities of Escherichia coli. Biotechnology and Bioengineering 42, 59-73.CrossRefGoogle Scholar
  49. Verduyn, C, Postma, E., Scheffers, W. A., van Dijken, J. P. (1990) Energetics of Saccharomyces cerevisiae in anaerobic glucose limited chemostat cultures. J. Gen. Microbiol. 136, 405-412.CrossRefGoogle Scholar
  50. de Vries, W., Kapteijn, W. M. C, van der Beek, E. G., Stouthamer, A. H. (1970) Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J. Gen. Microbiol. 63, 333-345.CrossRefGoogle Scholar
  51. Wiechert, W. (2001) 13C Metabolic Flux Analysis. Metabolic Eng. 3, 195-206CrossRefGoogle Scholar
  52. Wiechert, W., Siefke, C., de Graaf, A. A., Marx, A. (1997) Bidirectional reaction steps in metabolic networks. Part II: Flux estimation and statistical analysis. Biotechnol. Bioeng. 55:118-135CrossRefGoogle Scholar
  53. van Winden, W., Verheijen, P., Heijnen, S. (2001) Possible pitfalls of flux calculations based on l3C-labeling. Metabolic Eng. 3, 151-162CrossRefGoogle Scholar
  54. Biebl, H. (2002). Bulk chemicals from biotechnology : The case of 1,3 propane diol production and the New Trends. In Advances in Biochemical Engineering Biotechnology 74, 239-259Google Scholar
  55. Zupke, C., Stephanopoulos, G. (1995) Intracellular flux analysis in hybridomas using mass balances and in vivo 13C NMR. Biotechnol. Bioeng. 45, 292-303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jens Nielsen
    • 1
  • John Villadsen
    • 1
  • Gunnar Lidén
    • 2
  1. 1.Technical University of DenmarkLyngbyDenmark
  2. 2.Lund UniversityLundSweden

Personalised recommendations