Acclimation of Adult Males of Litopenaeus Setiferus Exposed at 27 °C and 31 °C: Bioenergetic Balance

  • Ariadna Sánchez
  • Cristina Pascual
  • Adolfo Sánchez
  • Francisco Vargas-Albores
  • Gilles LeMoullac
  • Carlos Rosas


The reduction of reproductive performance of adult males of Litopenaeus setiferus in captivity has been limiting the massive nauplii production, mainly by lowering the spermatophore attachment success associated with the male reproductive tract degenerative and the male reproductive melanization syndromes. Both syndromes had been related to the captivity and management stress. In this study the bioenergetic alterations were measured after seven days in captivity through absorption efficiency (AE), absorption (A), routine respiratory rate (R ROUT ), apparent heat increment (R AHI ), ammonia excretion (U) and post-prandial nitrogen excretion (PPNE), as indexes of captivity stress in adult males of L. setiferus kept at 27 and 31 °C. All this parameters were integrated through the production equation (P T ) = A − (R AHI + R ROUT + U) At 31 °C, the equation values were higher than those observed at 27 °C, except for R ROUT and ammonia excretion. The amount of energy directed to P T at 31 ºC was 1784.99 J g−1 afdw d−1, in contrast with shrimp exposed at 27 °C, where it was 1269.22 J g−1 afdw d−1 (P > 0.05). The O:N ratio obtained was lower than 10, indicating the use of a proteic substrate (P > 0.05). The reduction of the metabolic responses at high temperature shows what the adaptation capability of this shrimp is to tolerate a wide range of temperatures, also reflecting the adaptation mechanisms associated with its distribution in shallow coastal waters.


White Shrimp Ammonia Excretion Male Reproductive Tract Energetic Efficiency Dietary Protein Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfaro J (1990) A contribution to the understanding and control of the male reproductive system mela- nization disease of broodtsock Penaeus setiferus. College Station, Texas, USA, 65 pGoogle Scholar
  2. Alfaro J (1993) Reproductive quality evaluation of male Penaeus stylirostris from a grow-out pond. J World Aquac Soc 24:6–11CrossRefGoogle Scholar
  3. Alfaro J (1996) Effect of 17 alpha -methyltestosterone and 17 alpha-hydroxyprogesterone on the quality of white shrimp Penaeus vannamei spermatophores. J World Aquac Soc 27:487–492CrossRefGoogle Scholar
  4. Beamish FWH and Trippel EA (1990) Heat increment: A static or dynamic dimension in bioenergetic models. Trans Amer Fish Soc 119:649–666CrossRefGoogle Scholar
  5. BrafieldAE (1985) Laboratory studies of energy budgets. Crom Helm, London 251 pGoogle Scholar
  6. Bray WA, Leung-Trujillo JR, Lawrence AL and Robertson SM (1985) Preliminary investigations of the effect of temperature, bacterial inoculation and EDTA on sperm quality in captive Penaeus setiferus. J World Marie Soc 16:250–257CrossRefGoogle Scholar
  7. Brown A Jr, McVey JP, Middledich BS and Lawrence AL (1979) Maturation of white shrimp Penaeus setiferus in captivity. Proc World Marie Soc 435:135–136Google Scholar
  8. Campbell JW (1991) Excretory nitrogen metabolism. In: Prosser (ed) Comparative Animal Physilogy. 4th Ed, Wiley-Liss, New YorkGoogle Scholar
  9. Conover RJ (1966) Assimilation of organic matter by zooplancton. Limnol Oceanogr 11:338–345CrossRefGoogle Scholar
  10. Chakraborty SC, Ross LG and Ross B (1992) The effect of dietary protein level and ration on excretion of ammonia in common carp Cyprinius carpio. Comp Biochem Physiol 103A:579–584Google Scholar
  11. Chamberlain GW, Johnson SK and Lewis DH (1983) Swelling and melanization of the male reproductive system of captive adult peneid shrimp. J World Marie Soc 14:135–136CrossRefGoogle Scholar
  12. Du Prezz HH, Chen HY and Hsieh CS (1992) Apparent specific dynamic action of food in the grass shrimp Penaeus monodon Fabricus. Comp Biochem Physiol 103A: 173–178CrossRefGoogle Scholar
  13. Fry FEJ (1947) Effect of the environment on animal activity. University of Toronto Studies, Biol Series No 55, 62 pGoogle Scholar
  14. Guerin JL and Stickle WB (1997) Effect of salinity on survival and bioenergetics of juvenile lesser blue crabs, Callinectes similis. Mar Biol 129:63–69CrossRefGoogle Scholar
  15. Hall MR and van Ham EH (1998) The effects of different types of stress on blood glucose in the giant tiger prawn Penaeus monodon. J World Aquae Soc 29:290–299CrossRefGoogle Scholar
  16. Hopkins JS, Hamilton RD, Sandifer PA, Browdy CL and Stokes AD (1993) Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. J World Aquac Soc 24:304–320CrossRefGoogle Scholar
  17. Hunter DA and Uglow RF (1993) A technique for the measurement of total ammonia in small volumes of seawater and hemolymph. Ophelia 37:31 -40Google Scholar
  18. Johansson MW and Söderhäll K (1988) Isolation and purification of a cell adhesion factor from crayfish blood cells. J Cell Biol 106:1795–1803PubMedCrossRefGoogle Scholar
  19. Le Moullac G, Le Groumellec M, Ansquer D, Froissard S, Levy P and Aquacop (1997) Hematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle: protection against vibriosis. Fish Shellfish Immunol 7:227–234CrossRefGoogle Scholar
  20. Lee DOC (1992) Crustacean farming. Blackwell Scientific Publications, Oxford, England, 335 pGoogle Scholar
  21. Leung-Trujillo JR and Lawrence AL (1987) Observations on the decline in sperm quality of Penaeus setiferus under laboratory conditions. Aquaculture 65:363–370CrossRefGoogle Scholar
  22. Lucas A. (1996) Bioenergetics of Aquatic Animals. Taylor & Francis. Great Bretain, 169 pGoogle Scholar
  23. Lucas A. and Beninger PG (1985) The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44:159–166CrossRefGoogle Scholar
  24. Martínez-Otero A and E. Diaz-Iglesia (1975) Instalación respirométrica para el estudio de la actión de diversos agentes presentes en el agua de mar. Rev Inv Mar 111:1–8Google Scholar
  25. Mayzaud P and Conover RJ (1988) O:N ratio as a tool to describe zooplancton metabolism. Mar Ecol Prog Ser 45:289–302CrossRefGoogle Scholar
  26. Muncy RJ (1984) Species profiles: Life histories and environmental requeriments of coastal fishes and invertebrates (South Atlantic). White Shrimp. Fish and Wildlife Service-U.S. Department of the Interior and Coastal Ecology Group Waterways Experiment Station-U.S. Army Corps of Engineers. FWS/ OBS-82/11.27, TR EL-8-4, September 1984, USA, 20 pGoogle Scholar
  27. Pascual C, Valera E, Re-regis C, Gaxiola G, Sanchez A, Ramos L, Soto LA and Rosas C (1998) Effect of temperature on reproductive tract condition of Penaeus setiferus adult males. J World Aquac Soc 29:477–484CrossRefGoogle Scholar
  28. Pascual C (2000) Caracterización inmunologica y bioquímica de una población de machos adultos de Penaeus setiferus, línea de base y estrés térmico. Tesis de Licenciatura, Facultad de Ciencias, UNAM, 70 pGoogle Scholar
  29. Paterson BD (1993) The rise in inosine monophosphate and L-lactate concentrations in muscle of live penaeid prawns (Penaeus japonicus, Penaeus monodon) stressed by storage out of water. Comp Biochem Physiol 106B:395–400Google Scholar
  30. Perazzolo L and Barraco M (1997) The prophenoloxidase activating system of the shrimp Penaeuspaulensis and associated factors. Dev Comp Immunol 21:385–395PubMedCrossRefGoogle Scholar
  31. Racotta IS and Palacios E (1998) Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in P. vannamei. J World Aquae Soc 29:351–356CrossRefGoogle Scholar
  32. Regnault M (1979) Ammonia excretion of the sand shrimp Crangon crangon (L) during the moult cycle. J Comp Physiol 141:549–555Google Scholar
  33. Regnault M (1986) Excretion d’azote chez les crustaces influence de Tetat physiologique. Cah Biol Mar 28:361–373Google Scholar
  34. Rosas C, Sanchez A, Chimal ME, Saldaña G, Ramos L and Soto LA (1993) The effect of electrical stimulation on spermatophore regeneration in white shrimp Penaeus setiferus. Aq Liv Res 8:139–144CrossRefGoogle Scholar
  35. Rosas C, Sanchez A, Diaz-Iglesia E, Soto LA, Gaxiola G and Brito R (1996) Effect of dietary protein level on apparent heat increment and post-pandrial nitrogen excretion of Penaeus setiferus, P. schmitti, P duorarum, and P. notialis postlarvae. J World Aquae Soc 27:92–102CrossRefGoogle Scholar
  36. Rosas C, Martinez E, Gaxiola G, Brito R, Diaz-Iglesia E and Soto LA (1998) Effect of dissolved oxygen on energy balance and survival of Penaeus setiferus juveniles. Mar Ecol Prog Ser 174:67–75CrossRefGoogle Scholar
  37. Rosas C, Cuzon G, Gaxiola G, Arena L, Lemaire P, Soyez C and Van Wormhoudt A (2001) Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. J Exp Mar Biol Ecol (in press)Google Scholar
  38. Samocha TM, Burkott BJ, Lawrence AL, Juan YS, Jones ER and McKee DA (1998) Management strategies for production of the Atlantic white shrimp Penaeus setiferus as bait shrimp in outdoor ponds. J World Aquae Soc 29:211–220CrossRefGoogle Scholar
  39. Sanchez A, Pascual C, Sanchez A, Vargas-Albores F, Le Moullac G and Rosas C (2001) Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: the effect of acclimation. Aquaculture 198:13–28CrossRefGoogle Scholar
  40. Sandifer PA, Lawrence AL, Harris SG, Chamberlain GW, Stokes AD and Bray WA (1984) Electrical stimulation of spermatophore expulsion in marine shrimp, Penaeus spp. Aquaculture 41:181–187CrossRefGoogle Scholar
  41. Sandifer PA, Hopkins JS, Stokes AD and Browdy CL (1993) Preliminary comparisons of the native Penaeus setiferus and Pacific P. vannamei white shrimp for pond culture in South Carolina, USA. J World Aquac Soc 24:295–303CrossRefGoogle Scholar
  42. Sandifer PA, Lawrence AL, Harris SG, Chamberlain GW, Stokes AD and Bray WA (1984) Electrical stimulation of spermatophore expulsion in marine shrimp, Penaeus spp. Aquaculture 41: 181–187CrossRefGoogle Scholar
  43. Smith V and Ratcliffe NA (1980) Host defense reactions of the shore crab, Carcinus maenas (L.): clear- ance and distribution of the injected test particles. J Mar Biol Ass UK 60:89–102CrossRefGoogle Scholar
  44. Smith VJ and Söderhäll K (1983) Induction of degranu- lation and lysis of haemocytes in the freshwater cray fish, Astacus astacus by components of the phenoloxidase activating system in vitro. Cell Tissue Res 233:295–303PubMedCrossRefGoogle Scholar
  45. Soderhall K, Vey A and Ramstedt M (1984) Hemocyte lysate enhancement of fungal spore encapsulation by crayfish hemocytes. Develop Comp Immunol 8:23–29CrossRefGoogle Scholar
  46. Vernberg FJ and Piyatiratitivorakul S (1998) Effects of salinity and temperature on the bioenergetics of adult stages of the grass shrimp (Palaemonetes pugio Holthuis) from the North Inlet Estuary, South Carolina. Estuaries 21:176–193CrossRefGoogle Scholar
  47. Wiesepape LM (1975) Thermal resistance and acclimation rate in young white and brown shrimp, Penaeus setiferus Linn and Penaeus aztecus Ives. Texas A & M University Sea Grant 76–202, USA,196 pGoogle Scholar
  48. Zar JH (1974) BiostatisticalAnalysis. Englewood Cliff: Prentice Hall. New Jersey, USA, 413 pGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ariadna Sánchez
    • 1
  • Cristina Pascual
    • 1
  • Adolfo Sánchez
    • 1
  • Francisco Vargas-Albores
    • 2
  • Gilles LeMoullac
    • 3
  • Carlos Rosas
    • 1
  1. 1.Grupo de Biología Marina Experimental, Facultad de CienciasUNAMCd. del CarmenMéxico
  2. 2.Centro de Investigación en Alimentación y Desarrollo, A.C.HermosilloMéxico
  3. 3.Centre Océnologique du PacifìqueIfremer, AquacopTaravaoPolinésie Française

Personalised recommendations