Hepatopancreas Structure of Palaemonetes Argentinus (Decapoda, Caridea) Fed Different Levels of Dietary Cholesterol

  • Ana Cristina Díaz
  • Liliana G. Sousa
  • Ana María Petriella


Cholesterol is not synthesized “de novo” in crustaceans and it constitutes an essential nutrient for growth and survival, with an optimum dietary amount. In this study the effect of dietary cholesterol on hepatopancreas structure of Palaemonetes argentinus was evaluated. Individuals from Los Padres Lagoon (Mar del Plata, Argentina; 37°57’S, 57°44’W) were maintained in aquaria with a diet containing three cholesterol levels (0.4, 0.8, and 1.2%). After 60 days, the hepatopancreas from individuals in intermolt, premolt and postmolt were removed and processed by using standard histological techniques. No differences were found in molting rate and growth. The most important alterations were observed in postmolt prawns fed the 0.4% cholesterol diet. Besides the typical desquamated degeneration in postmolt, haemocytic infiltration, cellular dysplasia and necrosis were present. In all stages, R-cells showed hypervacuolization in prawns fed 0.8 and 1.2% cholesterol diets. The tissular changes related to the molt cycle are similar to those observed in wild prawns.


Dietary Cholesterol Molt Stage Midgut Gland Proximal Zone Penaeus Monodon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell TA and Lightner DV (1988) A handbook of Normal Penaeid Shrimp Histology. The World Aquac - ulture Society, Baton RougeGoogle Scholar
  2. Boschi EE (1981) Decapoda Natantia. (pp 1–61) In: Fauna de agua dulce de la República Argentina. Vol. 26, FECIC, Buenos AiresGoogle Scholar
  3. Castell JD, Mason EG and Covey JF (1975) Cholesterol requirements of juvenile American lobster (Homarus americanus). J Fish Res Bd Can 32:1431 1435CrossRefGoogle Scholar
  4. Chang ES and O’Connor JD (1983) Metabolism and transport of carbohydrates and lipids, (pp 263–287) In: Bliss D (ed.) The Biology of Crustacea. Vol. 5 Academic Press, New YorkGoogle Scholar
  5. Chen HYand Jenn JS (1991) Combined effects of dietary phosphatidylcholine and cholesterol on the growth, survival and body lipid composition of marine shrimp,Penaeus penicillatus. Aquaculture 96:167–178CrossRefGoogle Scholar
  6. D’Abramo LR, Bordner CE, Conklin DE and Baum NA (1984) Sterol requirement of juvenile lobsters,Homarussp. Aquaculture 42:13–25CrossRefGoogle Scholar
  7. Dall W (1981) Lipid absorption and utilization in the Norwegian lobster,Nephrops norvergicus(L.). J Exp Mar Biol Ecol 50:33–45CrossRefGoogle Scholar
  8. Destefanis S and Freyre L (1972) Relaciones tróficas de los peces de la laguna de Chascomús con un intento de referenciación ecológica y tratamiento bioestadístico del espectro trófico. Acta Zool Lilloana 29:17–53Google Scholar
  9. Díaz AC, Sousa LG and Petriella AM (1998) Setogenesis and growth of the freshwater prawnPalaemonetes argentinus(Decapoda, Caridea, Palaemonidae). Iheringia, Sér. Zoologia 85:59–65Google Scholar
  10. Fenucci JL, Müller MI and Petriella AM (1981) Efecto de la alimentación natural y artificial en el crecimiento del camarónArtemesia longinaris Bate. Rev Lat Acui 10:10–17Google Scholar
  11. Guary JC, Kayama M, Murakami Y and Ceccaldi H (1976) The effects of a fat-free diets and compounded diets supplemented with various oils on molt, growth and fatty acid composition of prawnPenaeus japonicusBate. Aquaculture 7:245–254CrossRefGoogle Scholar
  12. Johnston MA, Elder HY and Davies PS (1973) Cytology ofCarcinushaemocytes and their function in carbohydrates metabolism. Comp Biochem Physiol 46:569–583CrossRefGoogle Scholar
  13. Kanazawa A, Tanaka N, Teshima S and Kashiwada K (1971) Nutritional requirements of prawn. II. Requirement for sterols. Bull Jap Soc Sci Fish 37:211 215Google Scholar
  14. Martin GG and Hose JE (1992) Vascular elements and blood (hemolymph). (pp 117–149) In: Harrison FW and Humes AG (eds) Microscopic Anatomy of Invertebrates, Vol. 10 Wiley-Liss, New YorkGoogle Scholar
  15. Meyers TRand Hendricks JD (1985) Histopathology. (pp 283–331) In: Rand GM and Petrocelli SR (eds) Fundamentals of Aquatic Toxicology. Taylor & Francis, USAGoogle Scholar
  16. O’Connor JD and Gilbert LI (1968) Aspects of lipid metabolism in crustaceans. Am Zool 8: 529–539Google Scholar
  17. Petriella AM (1990) Study of the molting cycle of the Argentine prawnArtemesia longinarisBate. III. Influence of cholesterol. J Aqua Trop 5:77–85Google Scholar
  18. Petriella AM (1996) Effect of dietary cholesterol upon setogenesis and molting frequency in the Argentine prawnArtemesia longinarisBate (Crustacea, Decapoda, Penaeidae).J Aqua Trop11:167–174Google Scholar
  19. Ramesh MX and Kathiresan K (1992) Mangrove cholesterol in the diet of penaeid prawnPenaeus indicus. Indian J Mar Sci 21:164–166Google Scholar
  20. Rodríguez Souza JC, Sekine S, Suzuki S, Shima Y, Striissmann CA and Takashima F (1996) Usefulness of histological criteria for assessing the adequacy of diets forPanulirus japonicusphyllosoma larvae. Aquacult Nutr 2:133–140CrossRefGoogle Scholar
  21. Samuel MJ, Soundarapandian P and Kannupandi T (1997) Impact of dietary cholesterol on the growth and conversion efficiency of the freshwater prawnMacrobrachium malcolmsonii(H. Milne Edwards). Isr J Aquacult 49:3–11Google Scholar
  22. Sheen SS, Liu PC, Chen SN and Chen JC (1994) Cholesterol requirement for juvenile tiger shrimp (Penaeus monodon). Aquaculture 125:131–137CrossRefGoogle Scholar
  23. Sokal R. and RohlfJ (1995) Biometry. WH Freeman, New YorkGoogle Scholar
  24. Sousa GL and Petriella AM (2000) Histology of the hepatopancreas of the freshwater prawn Palaemonetes argentinus (Crustacea, Caridea). Biocell 24:189–195PubMedGoogle Scholar
  25. Storch V and Anger K (1983) Influence of starvation and feeding on the hepatopancreas of larvalHyas araneus(Decapoda, Majidae). Helgol Meeresunters 36:67–75CrossRefGoogle Scholar
  26. Storch V, Juario JY and Pascual FP (1984) Early effect of nutritional stress on the liver of milk fishChanos chanos(Forsskal) and on the hepatopancreas of the tiger prawnPenaeus monodon(Fabricius). Aquaculture 36:229–236CrossRefGoogle Scholar
  27. Strus J (1987) The effects of starvation on the structure and function of the hepatopancreas in the isopodLigia italica. Inv Pesq 51:505–514Google Scholar
  28. Teshima S (1981) Sterol metabolism, (pp 205–216) In: Pruder GD, Landgon C and Conklin D (eds) Proceedings of the second international conference on aquaculture nutrition: biochemical and physiological approaches to shellfish nutrition. Special Publication N° 2 Louisiana State University Division, Baton RougeGoogle Scholar
  29. Teshima S (1997) Phospholipids and sterols. Advances in World Aquaculture 6:85–107Google Scholar
  30. Teshima S and Kanazawa A (1971) Biosynthesis of sterols in the lobsterPanulirus japonica, the prawnPenaeus japonicusand the crabPortunus tuberculatus. Comp Biochem Physiol 38B:597–602Google Scholar
  31. Whitney JO (1969) Sterol, fatty acids and sterol content in eggs and hepatopancreas of the blue crabCallinectes sapidus(Rathbun). Acta Embriol Exp 1969:111–121Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ana Cristina Díaz
    • 1
    • 2
  • Liliana G. Sousa
    • 1
    • 2
  • Ana María Petriella
    • 1
    • 2
  1. 1.Departamento de Ciencias MarinasUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.CIC PciaBuenos Aires CONICETArgentina

Personalised recommendations