Bcl-6 Uncouples B Lymphocyte Proliferation from Differentiation

  • Douglas T. Fearon
  • Peter M. Manders
  • Simon D. Wagner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 512)


The effective stimulation of lymphocytes by antigen has three potential outcomes for antigen-specific clones, their replication leading to net expansion of cell numbers, their differentiation into effector cells and their differentiation into memory cells. The coordination of these cellular responses is important because, as in other cellular systems, differentiation to the effector stage of development may be associated with an inability to replicate further. For B lymphocytes, terminal differentiation is coupled to cessation of mitosis since non-transformed plasma cells cannot re-enter the cell cycle; it is not clear if terminally differentiated effector T cells have a similar limitation. Therefore, in the immune sytem where the number of antigen-specific clones in a naïve individual is low, premature terminal differentiation occurring before sufficient cellular replication has been achieved would limit the effectiveness of an immune response. Yet, the need for clonal expansion must be appropriately balanced with the obvious benefits of early control and elimination of the infectious process by differentiated lymphocytes. Finally, control of effector cell differentiation and function in the immune system may protect the individual from autoimmune or allergic disease.


Zinc Finger Germinal Center Terminal Differentiation Raji Cell Promyelocytic Leukemia Zinc Finger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.T. Opferman, B.T. Ober, and P.G. Ashton-Rickardt, 1999, Linear differentiation of cytotoxic effectors into memory T lymphocytesScience283, 1745–1748.CrossRefPubMedGoogle Scholar
  2. 2.
    C.A. Turner, Jr., D.H. Mack, M.M. Davis, 1994, Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulinsecreting cells, Cell 77, 297–306.CrossRefPubMedGoogle Scholar
  3. 3.
    J.F. Piskurich, K.I. Lin, Y. Lin, Y. Wang, J.P. Ting, and K. Calame, 2000, BLIMP-1 mediates extinction of major histocompatibility class II transactivator expression in plasma cellsNat. Immunol.1, 526–532.CrossRefPubMedGoogle Scholar
  4. 4.
    Y. Lin, K. Wong, and K. Calame, 1997, Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiationScience276, 596–599.CrossRefPubMedGoogle Scholar
  5. 5.
    P. D. Hodgkin, J. H. Lee, and A.B. Lyons, 1996, B cell differentiation and isotype switching is related to division cycle numberJ. Exp. Med. 184,277–281.CrossRefPubMedGoogle Scholar
  6. 6.
    S.M. Kaech, and R. Ahmed, 2001, Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cellsNat. Immunol2, 415–422.PubMedPubMedCentralGoogle Scholar
  7. 7.
    M.J. van Stipdonk, E.E. Lemmens, and S.P. Schoenberger, 2001, Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiationNat. Immunol. 2,423–429.PubMedGoogle Scholar
  8. 8.
    B.W. Baron, G. Nucifora, N. McCabe, R. Espinosa III, M.M. Le Beau, and T.W. McKeithan, 1993, Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(g27;g11) in B-cell lymphomasProc. Natl. Acad. Sci. USA 90,5262–5266.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J.P. Kerckaert, C. Deweindt, H. Tilly, S. Quief, G. Lecocq, and C. Bastard, 1993, LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas.Nature Genet.5, 66–70.CrossRefPubMedGoogle Scholar
  10. 10.
    B.H. Ye, F. Lista, F. Lo Coco, D.M. Knowles, K. Offit, R.S. Chaganti, and R. Dalla-Favera, 1993, Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphomaScience 262,747–750.CrossRefPubMedGoogle Scholar
  11. 11.
    C. Deweindt, J.P. Kerckaert, H. Tilly, S. Quief, V.C. Nguyen, and C. Bastard, 1993, Cloning of a breakpoint cluster region at band 3q27 involved in human non-Hodgkin’s lymphoma.Genes Chromosomes Cancer 8,149–154.CrossRefPubMedGoogle Scholar
  12. 12.
    T. Miki, N. Kawamata, A. Arai, K. Ohashi, Y. Nakamura, A. Kato, S. Hirosawa, and N. Aoki, 1994, Molecular cloning of the breakpoint for 3q27 translocation in B-cell lymphomas and leukemiasBlood 83,217–222.PubMedGoogle Scholar
  13. 13.
    P. Dhordain, O. Albagli, R.J. Lin, S. Ansieau, S.S. Quief S.A. Leutz A.J.P. Kerckaert, R.M. Evans, and D. Leprince, 1997, Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoproteinProc. Natl. Acad. Sci. USA 94,10762–10767.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    P. Dhordain, R.J. Lin, S. Quief, D. Lantoine, J.P. Kerckaert, R.M. Evans, O. Albagli, 1998, The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repressionNucleic Acids Res. 26,4645–4651.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    K.D. Huynh, and V.J. Bardwell, 1998, The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRTOncogene 17,2473–2484.CrossRefPubMedGoogle Scholar
  16. 16.
    C.W. Wong, and M.L. Privalsky, 1998, Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6J. Biol. Chem. 273,27695–27702CrossRefPubMedGoogle Scholar
  17. 17.
    K.F. Ahmad, C.K. Engel, and G.G. Prive GG, 1998, Crystal structure of the BTB domain from PLZFProc. Natl. Acad. Sci. USA 95,121231212–8Google Scholar
  18. 18.
    X. Li, H. Peng, D.C. Schultz, J.M. Lopez-Guisa, F.J. Rauscher, 3rd, and R. Marmorstein, 1999, Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoproteinCancer Res. 59,5275–5282.PubMedGoogle Scholar
  19. 19.
    A. Klug, 1999, Zinc finger peptides for the regulation of gene expression, J.Mol. Biol. 293,215–218.CrossRefPubMedGoogle Scholar
  20. 20.
    S.A. Wolfe, L. Nekludova, and C.O. Pabo, 2000, DNA recognition by Cys2His2 zinc finger proteinsAnnu. Rev. Biophys. Biomol. Struct. 29,183–212.CrossRefPubMedGoogle Scholar
  21. 21.
    N. Kawamata, T. Miki, K. Ohashi, K. Suzuki, T. Fukuda, S. Hirosawa, and N. Aoki, 1994, Recognition DNA sequence of a novel putative transcription factor, BCL6Biochem. Biophys. Res. Commun. 204,366–374.CrossRefPubMedGoogle Scholar
  22. 22.
    B.W. Baron, R.R. Stanger, E. Hume, A. Sadhu, R. Mick, J.P. Kerckaert, C. Deweindt, C. Bastard, G. Nucifora, and N. Zeleznik-Le, 1995, BCL6 encodes a sequence-specific DNA-binding protein.Genes Chromosomes Cancer 13,221–224.CrossRefPubMedGoogle Scholar
  23. 23.
    C.C. Chang, B.H. Ye, R.S. Chaganti, and R. Dalla-Favera, 1996, BCL-6, a POZ/zincfinger protein, is a sequence-specific transcriptional repressorProc. Natl. Acad. Sci. USA 93,6947–6952.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    V.L. Seyfert, D. Allman, Y. He, and L.M. Staudt, 1996, Transcriptional repression by the proto-oncogene BCL-6Oncogene 12,2331–2342.PubMedGoogle Scholar
  25. 25.
    A.L. Dent, A.L. Shaffer, X. Yu, D. Allman, and L.M. Staudt, 1997, Control of inflammation, cytokine expression, and germinal center formation by BCL-6Science276, 589–592.CrossRefPubMedGoogle Scholar
  26. 26.
    M.B. Harris, C.C. Chang, M.T. Berton, N.N. Danial, J. Zhang, D. Kuehner, B.H. Ye, M. Kvatyuk, P.P. Pandolfi, G. Cattoretti, R. Dalla-Favera, and P.B. Rothman, 1999, Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switchingMol. Cell Biol.19, 7264–7275.CrossRefGoogle Scholar
  27. 27.
    T. Hartatik, S. Okada, S. Okabe, M. Arima, M. Hatano, and T. Tokuhisa, 2001, Binding of BAZF and Bc16 to STAT6-binding DNA sequencesBiochem. Biophys. Res. Commun. 284,26–32.CrossRefPubMedGoogle Scholar
  28. 28.
    R. Reljic, S.D. Wagner, L.J. Peakman, and D.T. Fearon DT, 2000, Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6J. Exp. Med. 192,1841–1848.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    T. Onizuka, M. Moriyama, T. Yamochi, T. Kuroda, A. Kazama, N. Kanazawa, K. Sato, T. Kato, H. Ota, and S. Mori, 1995, BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterpartsBlood 86,28–37.PubMedGoogle Scholar
  30. 30.
    G. Cattoretti, C.C. Chang, K. Cechova, J. Zhang, B.H. Ye, B. Falini, D.C. Louie,K. Offit, R.S. Chaganti, and R. Dalla-Favera, 1995, BCL-6 protein is expressed in germinal-center B cellsBlood 86,45–53.PubMedGoogle Scholar
  31. 31.
    L. Flenghi, B.H. Ye, M. Fizzotti, B. Bigerna, G. Cattoretti, S. Venturi, R. Pacini, S. Pilen, F. Lo Coco, and E. Pescarmona, 1995, A specific monoclonal antibody (PG-B6) detects expression of the BCL-6 protein in germinal center B cellsAm. J. Pathol.147, 405–411.PubMedPubMedCentralGoogle Scholar
  32. 32.
    H. Niu, B.H. Ye, and R. Dalla-Favera, 1998, Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factorGenes Dell. 12,1953–1961.CrossRefGoogle Scholar
  33. 33.
    B.H. Ye, G. Cattoretti, Q. Shen, J. Zhang, N. Hawe, R. de Waard, C. Leung, M. NouriShirazi, A. Orazi, R.S. Chaganti, P. Rothman, A.M. Stall, P.P. Pandolfi, and R. Dalla-Favera, 1997, The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammationNat. Genet. 16,161–170.CrossRefPubMedGoogle Scholar
  34. 34.
    T. Fukuda, T. Yoshida, S. Okada, M. Hatano, T. Miki, K. Ishibashi, S. Okabe, H. Koseki, S. Hirosawa, M. Taniguchi, N. Miyasaka, and T. Tokuhisa, 1997, Disruption of the BcI6 gene results in an impaired germinal center formationJ. Exp. Med. 186,439–448.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    A.L. Dent, J. Hu-Li, W.E. Paul, and L.M. Staudt, 1998, T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6Proc. Natl. Acad. Sci. USA 95,13823–13828.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    L.M. Toney, G. Cattoretti, J.A. Graf, T. Merghoub, P.P. Pandolfi, R. Dalla-Favera B.H. Ye, and A.L. Dent, 2000, BCL-6 regulates chemokine gene transcription in macrophages. Nat. Immunol. 1214–220.CrossRefPubMedGoogle Scholar
  37. 37.
    A.L. Shaffer, X. Yu, Y. He, J. Boldrick, E.P. Chan, and L.M. Staudt, 2000, BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle controlImmunity 13,199–212.CrossRefPubMedGoogle Scholar
  38. 38.
    M.A. Blackman, M.A.TiggeS, M.E. Minie, and M.E. Koshland, 1986, A model system for peptide hormone action in differentiation: interleukin 2 induces a B lymphoma to transcribe the J chain geneCell 47,609–617.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Douglas T. Fearon
  • Peter M. Manders
  • Simon D. Wagner
    • 1
  1. 1.Wellcome Trust Immunology UnitMRC CentreCambridge CB2 2SPUK

Personalised recommendations