Skip to main content

Isomorphism Types and Theories of Rogers Semilattices of Arithmetical Numberings

  • Chapter
Computability and Models

Abstract

We investigate differences in isomorphism types and elementary theories of Rogers semilattices of arithmetical numberings, depending on different levels of the arithmetical hierarchy. It is proved that new types of isomorphism appear as the arithmetical level increases. It is also proved the incompleteness of the theory of the class of all Rogers semilattices of any fixed level. Finally, no Rogers semilattice of any infinite family at arithmetical level n ≥ 2 is weakly distributive, whereas Rogers semilattices of finite families are always distributive.

Partial funding provided by grant INTAS Computability in Hierarchies and Topological Spaces no. 00–499; and by grant PICS-541-Kazakhstan.

Partial funding provided by grant INTAS Computability in Hierarchies and Topological Spaces no 00–499.

Partial funding provided by grant INTAS Computability in Hierarchies and Topological Spaces no 00–499; work done under the auspices of GNSAGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Badaev, On minimal enumerations, Siberian Adv. Math, 1992, vol. 2, no. 1, pp. 1–30.

    MathSciNet  Google Scholar 

  2. S.A. Badaev, S.S. Goncharov, A. Sorbi, Arithmetical numberings: completeness and universality. This volume.

    Google Scholar 

  3. S.A. Badaev, S.S. Goncharov, S.Yu. Podzorov, A. Sorbi, Arithmetical numberings: algebraic properties of Rogers semilattices. This volume.

    Google Scholar 

  4. V.D. Dzgoev, Constructive Enumerations of Boolean Lattices. Algebra i Logika, 1988, vol. 27, no. 6, pp. 641–648 (Russian); Algebra and Logic, 1988, vol. 27, no. 6, pp. 395–400 (English translation).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu.L. Ershov, Theory of Numberings. Nauka, Moscow, 1977 (Russian).

    Google Scholar 

  6. L. Feiner, Hierarchies of Boolean algebras. J. Symb. Logic. 1970, vol. 35, no. 3, pp. 365–374.

    Article  MathSciNet  Google Scholar 

  7. S.S. Goncharov Countable Boolean Algebras and Decidability., Plenum, Consultants Bureau, New York, 1997.

    Google Scholar 

  8. A.H. Lachlan, Standard classes of recursively enumerable sets. Zeit. Mat. Log. Grund. Math., 1964, vol. 10, pp. 23–42.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.H. Lachlan, On the lattice of recursively enumerable sets. Trans. Amer. Math. Soc., 1968, vol. 130, pp. 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.I. Mal’tsev, Algorithms and Recursive Functions. Nauka, Moscow, 1965 (Russian); Wolters-Noordoff Publishing, Groningen, 1970 (English translation).

    Google Scholar 

  11. S.S. Marchenkov, On computable enumerations of families of general recursive functions. Algebra i Logika, 1972, vol. 11, no. 5, pp. 588–607 (Russian); Algebra and Logic, 1972, vol. 11, no. 5, pp. 326–336 (English translation).

    Article  MathSciNet  Google Scholar 

  12. S.Yu. Podzorov, Initial segments in Rogers semilattices \( \sum\nolimits_n^0 {} \)-computable numberings, Algebra and Logic, to appear.

    Google Scholar 

  13. H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  14. R.I. Soare Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin Heidelberg, 1987.

    Google Scholar 

  15. V.V. V’jugin, On some examples of upper semilattices of computable enumerations. Algebra i Logika, 1973, vol. 12, no. 5, pp. 512–529 (Russian); Algebra and Logic, 1973, vol. 12, no. 5, pp. 277–286 (English translation).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Badaev, S., Goncharov, S., Sorbi, A. (2003). Isomorphism Types and Theories of Rogers Semilattices of Arithmetical Numberings. In: Computability and Models. The University Series in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0755-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0755-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5225-9

  • Online ISBN: 978-1-4615-0755-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics