The Heme Oxygenase/Carbon Monoxide System in Hepatobiliary Pathophysiology

  • David Sacerdoti
  • Angelo Gatta

Abstract

Heme-oxygenase (HO), the rate-limiting enzyme in heme catabolism, was first described in 1968 by Tenhunen et al.1 This enzyme catalyzes the degradation of heme to biliverdin and iron, with the concurrent release of carbon monoxide (CO). In mammals, biliverdin is then converted to bilirubin by the cytosolic enzyme biliverdin reductase; bilirubin is subsequently conjugated with sugars (mainly glucuronic acid) by UDP-glucuronyl transferase and then excreted into the bile. HO is also responsible for the recycling of iron from senescent red blood cells and extra-hematopoietic cells such as liver. Some 80–85% of the bilirubin formed in vivo is derived from hemoglobin released from aging or damaged erythrocytes; this accounts for the high basal activity of HO within those tissues rich in reticuloendothelial cells, such as the spleen and bone marrow. HO mRNA levels are high in fetal rat liver during prenatal maturation (9 days before birth) and reach a maximum 24hrs after birth2 when levels decline but remain above adult levels for at least a month. This correlates with a greater capacity of the liver for bilirubin production in fetuses compared with adults and such circumstances could render the fetus more susceptible to drug injuries because of a depressed heme-cytochrome P450 system. However, Dennery et al.3 found that serum bilirubin protects against serum oxidative damage in the first days of life in noenatal Gunn rats exposed to hypoxia.

Keywords

Ischemia Carbon Monoxide Vinyl Bilirubin Porphyrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tenhunen R., Marver H.S., and Schmid R. The enzymatic conversion of heme to bilirubin by micro-somal heme oxygenase.Proc Natl Acad Sci USA 61:748–755, 1968.PubMedCrossRefGoogle Scholar
  2. 2.
    Lin J.H.-C., Villalon P., Nelson I, and Abraham N.G. Expression of rat liver heme oxygenase gene during development.Arch Biochem Biophys 270:623–629, 1989.PubMedCrossRefGoogle Scholar
  3. 3.
    Dennery P.A., McDonagh A.F., Spitz D.R., Rodgers P.A., and Stevenson O.K. Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hypoxia.Free Rad Biol Med 9:395–404, 1995.CrossRefGoogle Scholar
  4. 4.
    Maines M.D., Abraham N.G., and Kappas A. Solubilization and partial purification of heme oxygenase from rat liver.J Biol Chem 252:5900–5903, 1977.PubMedGoogle Scholar
  5. 5.
    Abraham N.G., Lin J.H.-C., Schwartzman M.L., Levere R.D., and Shibahara S. The physiological significance of heme oxygenase.Int J Biochem 20:543–558, 1988.PubMedCrossRefGoogle Scholar
  6. 6.
    McCoubrey Jr. W.K., Huang T.J., and Maines M.D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3.Eur J Biochem 247:725–732, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., and Ames B.N. Bilirubin is an antioxidant of possible physiological significance.Science 235:1043–1046, 1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Solangi K., Sacerdoti D., Goodman A., Schwartzman M.L., Abraham N.G., and Levere R.D. Differential effects of partial hepatectomy on hepatic and renal heme and cytochrome P450 metabolism.Am J Med Sci 296:387–391, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Poss K.D. and Tonegawa S. Heme oxygenase-1 is required for mammalian iron reutilization.Proc Natl Acad Sci USA 94:10919–10924, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., and Ohta K. Oxydative stress causs enhanced vascular endothelial injury in human heme oxygenase-1 deficiency.J Clin Invest 103:129–135, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Abraham N.G., Lavrosky Y., Schwartzman M.L., Stoltz R.A., Levere R.D., Gerritsen M.E., and Shibahara S. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity.Proc Natl Acad Sci USA 92:6798–6802, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Goda N., Suzuki K., Naito M., Takeoka S., Tsuchida E., Ishimura Y., Tamatani T., and Suematsu M. Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxidemediated microvascular relaxation.J Clin Invest 101:604–612, 1998.PubMedCrossRefGoogle Scholar
  13. 13.
    Bauer I., Wanner G.A., Rensing H., Alte C., Miescher E.A., Wolf B., and Pannen B.H. Expression pattern of heme oxygenase isoenzyme 1 and 2 in normal and stress-exposed rat liver.Hepatology 27:829–838, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    Christodoulides N., Durante W., Kroll M.H., and Schafer A.I. Vascular smooth muscle heme oxygenases generate guanyl cyclase-stimulatory carbon monoxide.Circulation 91:2306–2309, 1995.PubMedCrossRefGoogle Scholar
  15. 15.
    Zakhary R., Gaine S.P., Dinerman J.L., Ruat M., Flavahan N.A., and Snyder S. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation.Proc Natl Acad Sci USA 93:795–798, 1996.PubMedCrossRefGoogle Scholar
  16. 16.
    Suematsu M., Kashiwagi S., Sano T., Goda N., Shinoda Y., and Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion.Biochem Biol Res Commun 205: 1333–1337,1994.CrossRefGoogle Scholar
  17. 17.
    Suematsu M., Goda N., Sano T., Kashiwagi S., Egawa T., Shinoda Y., and Ishimura Y. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver.J Clin Invest 96(5):2431–2437, 1995.PubMedCrossRefGoogle Scholar
  18. 18.
    Pannen B.H. and Bauer M. Differential regulation of hepatic arterial and portal venous vascular resistance by nitric oxide and carbon monoxide in rats.Life Sci 62:2025–2033, 1998.PubMedCrossRefGoogle Scholar
  19. 19.
    Sacerdoti D., McGiff J.C., Oyekan A.O., Yang L., Gatta A., and Abraham N.G. Increase in portohepatic resistance in cirrhosis: the role of the carbon monoxidelheme oxygenase system. Acta Haematologica abstract 268, p. 67.Google Scholar
  20. 20.
    Suematsu M. and Yshimura Y. The heme oxygenase-carbon monoxide system: a regulator of hepatobiliry function.Hepatology 31:3–6, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Dufour J.-F.J., Turner T.J., and Arias I.R. Nitric oxide blocks bile canalicular contraction by inhibiting inositol triphosphate-dependent calcium mobilization.Gastroenterology 108:841–849, 1995.PubMedCrossRefGoogle Scholar
  22. 22.
    Sacerdoti D., Escalante B., Abraham N.G., McGiff J.C., Levere R.D., and Schwartzman M.L. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats.Science 243:388–390, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Escalante B., Sacerdoti D., Davidian M.M., Schwartzman M.L., and McGiff. Chronic treatment with tin normalizes blood pressure in spontaneously hypertensive rats.Hypertension 17:776–779, 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Tacchini L., Schiaffonati L., Pappalardo C., Gatti S., and Bernelli-Zazzera A. Expression of HSP70, intermediate-early response and heme oxygenase genes in ischemic-reperfused rat liver.Lab Invest 68:465–471, 1993.PubMedGoogle Scholar
  25. 25.
    Abraham N.G., Lavrovsky Y., Schwartzman M.L., Stoltz R.A., Levere R.D., Gerritsen M.E., Shibahara S., and Kappas A. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: Protective effect against heme and hemoglobin toxicity.Proc Natl Acad Sci USA 92:6798–6802, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Pannen B.H.J., Kohler N., Hole B., Bauer M., Clemens M.G., and Geiger K.K. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats.J Clin Invest 102:1220–1228, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Kyokane T., Norimizu S., Taniai H., Yamaguchi T., Takeoka S., Tsuchida E., Naito M., Nimura Y., Ishimura Y., and Suematsu M. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver.Gastroenterology 120:1227–1240, 2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Berglund L., Angelin B., Blomstrand R., Drummond G.S., and Kappas A. Sn-protoporphyrin lowers serum bilirubin levels, decreases biliary bilirubin output, enhances biliary heme excretion and potently inhibits hepatic heme oxygenase activity in normal human subjects.Hepatology 8:625–631, 1988.PubMedCrossRefGoogle Scholar
  29. 29.
    Kappas A., Drummond G.S., Manola T., Petmezaki S., and Valaes T. Sn-protoporphyrin use in the management of hyperbilirubinemia in term newborns with direct Coombs-positive ABO incompatibility.Pediatrics 81:485–497, 1988.PubMedGoogle Scholar
  30. 30.
    Galbraith R.A. and Kappas A. Pharmokinetics of tin-mesoporphyrin in man and the effects of tin- chelated porphyrins on hyperexcretion of heme pathway precursors in patients with acute inducible porphyria.Hepatology 9:882–888, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Berglund L., Angelin B., Hultcrantz K., et al. Studies with the haem oxygenase inhibitor Snprotoporphyrin in patients with primary biliary cirrhosis and idiopathic haemochromatosis.Gut 31:899–904, 1990.PubMedCrossRefGoogle Scholar
  32. 32.
    Galbraith R.A., Drummond G.S., and Kappas A. Suppression of bilirubin production in the Crigler-Najjar type I syndrome: studies with the heme oxygenase inhibitor tin-mesoporphyrin.Pediatrics 89:175–182, 1992.PubMedGoogle Scholar
  33. 33.
    Valaes T., Petmezaki S., Henschke C., Drummond G.S., and Kappas A. Control of jaundice in preterm newborns by an inhibitor of bilirubin production: studies with tin-mesoporphyrin.Pediatrics 93:1–11, 1994.PubMedGoogle Scholar
  34. 34.
    Fernandez M. and Bonkovsky H.L. Increased heme oxygenase-1 gene expression in liver cells and splanchnic organs from portal hypertensive rats.Hepatology 29:1672–1679, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Makino N., Suematsu M., Sugiura Y., Morikawa H., Shiomi S., Goda N., Sano T., Nimura Y., Sugimachi K., and Ishimura Y. Altered expression of heme oxygenase-1 in the livers of patients with portal hypertensive disease.Hepatology 33:32–42, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Sacerdoti D., Oyekan A., Jiang S., Gatta A., McGiff J.C., and Abraham N.G. The role of carbon monoxide abd heme-oxygenase in the alterations of mesenteric and porto-hepatic circulation of cirrhotic rats.Hepatology 30:237A, abstract 305, 1999.CrossRefGoogle Scholar
  37. 37.
    Sacerdoti D., McGiff J.C., Oyekan A.O., Yang L., Gatta A., and Abraham N.G. Transfection of rats with human heme-oxygenase-1 gene reproduces abnormalities of mesenteric circulation of cirrhosis.J Hepatol 34; suppl.1: abstract 43, 2001.Google Scholar
  38. 38.
    Fernandez M., Lambrecht R., and Bonkovsky H.L. Increased heme oxygenase activity in splanchnic organs from portal hypertensive rats: role in modulating mesenteric vascular reactivity.J Hepatol 34:812–817,2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • David Sacerdoti
    • 1
  • Angelo Gatta
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity and Azienda Ospedaliera of PadovaVia Giustiniani 2PadovaItaly

Personalised recommendations