Heme Oxygenase-1 (HO-1)

Multiple Effects of a Protective Gene that Prevents Graft Rejection
  • P. O. Berberat
  • L. Günther
  • S. Brouard
  • M. P. Soares
  • F. H. Bach

Abstract

Transplantation is considered one of the most effective ways to overcome terminal dysfunction and failure of some organs. By transplanting organs or tissues between two genetically distinct individuals, an immune mediated response is triggered in the transplant recipient that evokes a potent inflammatory reaction, causing cell injury/death and leading to graft dysfunction and rejection. So far the main therapeutic strategy used to maintain graft function and survival has been to modulate the host immune response directed against the transplanted organ. In the case of an immediately vascularized transplant, the endothelial cell (EC) monolayer lining the blood vessels of the graft acts as the first target of the anti-graft immune response. We have suggested that the survival of grafts may relay on how these cells react to the anti-graft immune response: whether in a rejection-promoting or a “protective”

Keywords

Ischemia Cobalt Carbon Monoxide Bilirubin Cyclosporin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Cines, E.S. Pollak, C.A. Buck, J. Loscalzo, G.A. Zimmerman, R.P. McEver, J.S. Pober, T.M. Wick, B.A. Konkle, B.S. Schwartz, E.S. Barnathan, K.R. McCrae, B.A. Hug, A.M. Schmidt, and D.M. Stern, Endothelial cells in physiology and in the pathophysiology of vascular disorders, Blood 91(10), 3527–3561 (1998).PubMedGoogle Scholar
  2. 2.
    J.S. Pober and R.S. Cotran, The role of endothelial cells in inflammation, Transplantation 50(4), 537–544 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Mantovani, F. Bussolino, and M. Introna, Cytokine regulation of endothelial cell function-from molecular level to the bedside, Immunol Today 18(5), 231–240 (1997).PubMedCrossRefGoogle Scholar
  4. 4.
    F.H. Bach, S.C. Robson, C. Ferran, H. Winkler, M.T. Millan, K.M. Stuhlmeier, B. Vanhove, M.L. Blakely, van, der, Werf, Wj, E. Hofer, and a.l. et, Endothelial cell activation and thromboregulation during xenograft rejection, Immunological Rev 141(5), 5–30 (1994).CrossRefGoogle Scholar
  5. 5.
    J.L. Platt, New directions for organ transplantation, Nature 392(6679 Suppl S), 11–17 (1998).PubMedGoogle Scholar
  6. 6.
    F.H. Bach, H. Winkler, C. Ferran, W.W Hancock, and S.C. Robson, Delayed xenograft rejection, Immunol Today 17(8), 379–384 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    R.K. Kutty, R.F. Daniel, D.E. Ryan, W. Levin, and M.D. Maines, Rat liver cytochrome P-450b, P-420b, and P-420c are degraded to biliverdin by heme oxygenase, Arch Biochem Biophys 260(2), 638–644 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    M.D. Maines, The heme oxygenase system: a regulator of second messenger gases, Annu Rev Pharmacol Toxicol 37(••), 517–554 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    L.E. Otterbein and A.M. Choi, Heme oxygenase: colors of defense against cellular stress, Am J Physiol Lung Cell Mol Physiol 279(6), L1029–1037 (2000).PubMedGoogle Scholar
  10. 10.
    S.W Ryter and R.M. Tyrrell, The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties, Free Radic Biol Med 28(2), 289–309 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Balla, H.S. Jacob, J. Balla, M. Rosenberg, K. Nath, F. Apple, J.W Eaton, and G.M. Vercellotti, Ferritin: a cytoprotective antioxidant strategem of endothelium, J Biol Chem 267(25), 18148–18153 (1992).PubMedGoogle Scholar
  12. 12.
    R.S. Eisenstein, M.D. Garcia, W. Pettingell, and H.N. Munro, Regulation of ferritin and heme oxygenase synthesis in rat fìbroblasts by different forms of iron, Proc Natl Acad Sci USA 88(3), 688–692 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    A.M. Choi and J. Alam, Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury, Am J Resp Cell & Mol Biol 15(1), 9–19 (1996).Google Scholar
  14. 14.
    J. Balla, H.S. Jacob, G. Balla, K. Nath, J.W. Eaton, and G.M. Vercellotti, Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage, Proc Natl Acad Sci of the USA 90(20), 9285–9289 (1993).CrossRefGoogle Scholar
  15. 15.
    C.M. Terry, J.A. Clikeman, J.R. Hoidal, and K.S. Callahan, TNF-alpha and IL-1 alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells, Am J Physiol 276(5 Pt 2), H1493–1501 (1999).PubMedGoogle Scholar
  16. 16.
    C.M. Terry, J.A. Clikeman, J.R. Hoidal, and K.S. Callahan, Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1 expression in human endothelial cells, Am J Physiol 274(3 Pt 2), H883–89l (1998).PubMedGoogle Scholar
  17. 17.
    J. Alam, D. Stewart, C. Touchard, S. Boinapally, A.M. Choi, and J.L. Cook, Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene, J Biol Chem 274(37), 26071–26078 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    C.H. He, P. Gong, B. Hu, D. Stewart, M.E. Choi, A.M. Choi, and J. Alam, Identification of activating transcription factor 4 (ATF4) as an Nrf2- interacting protein. Implication for heme oxygenase-1 gene regulation, J Biol Chem 276(24), 20858–20865 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    L. Yang, S. Quan, and N.G. Abraham, Retrovirus-mediated HO gene transfer into endothelial cells protects against oxidant-induced injury, Am J Physiol 277(1 Pt 1), L127–133 (1999).PubMedGoogle Scholar
  20. 20.
    S. Brouard, L.E. Otterbein, J. Anrather, E. Tobiasch, F.H. Bach, A.M. Choi, and M.P. Soares, Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis, J Exp Med 192(7), 1015–1026 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    N.G. Abraham, Y. Lavrovsky, M.L. Schwartzman, R.A. Stoltz, R.D. Levere, M.E. Gerritsen, S. Shibahara, and A. Kappas, Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity, Proc Natl Acad Sci USA 92(15), 6798–6802 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    M.P..Soares, Y. Lin, J. Anrather, E. Csizmadia, K. Takigami, K. Sato, S.T. Grey, R.B. Colvin, A.M. Choi, K.D. Poss, and F.H. Bach, Expression of heme oxygenase-1 (HO-1) can determine cardiac xenograft survival, Nat Med 4(••) 1073–1077 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    F. Amersi, R. Buelow, H. Kato, B. Ke, A.J. Coito, X.D. Shen, D. Zhao, J. Zaky, J. Melinek, C.R. Lassman, J.K. Kolls, J. Alam, T. Ritter, H.D. Volk, D.G. Farmer, R.M. Ghobrial, R.W. Busuttil, and J.W. Kupiec-Weglinski, Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury, J Clin Invest 104(11), 1631–1639 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    L. Otterbein, B.Y. Chin, S.L. Otterbein, V.C Lowe, H.E. Fessler, and A.M. Choi, Mechanism of hemoglobin-induced protection against endotoxemia in rats: a ferritin-independent pathway, Am J Physiol 272(2 Pt 1), L268–275 (1997).PubMedGoogle Scholar
  25. 25.
    L. Otterbein, S.L. Sylvester, and A.M. Choi, Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1, Am J Resp Cell & Mol Biol 13(5), 595–601 (1995).Google Scholar
  26. 26.
    K.D. Poss, and S. Tonegawa, Reduced stress defense in heme oxygenase 1-deficient cells Proc Natl AcadSciofthe USA 94(20), 10925–10930 (1997).CrossRefGoogle Scholar
  27. 27.
    K. Sato, J. Balla, L. Otterbein, R.N. Smith, S. Brouard, Y. Lin, E. Csizmadia, J. Sevigny, S.C. Robson, G. Vercellotti, A.M. Choi, F.H. Bach, and M.P. Soares, Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants, J Immunol 166(6), 4185–4194(2001).PubMedGoogle Scholar
  28. 28.
    D. Willis, A.R. Moore, R. Frederick, and D.A. Willoughby, Heme oxygenase: a novel target for the modulation of the inflammatory response, Nat Med 2(1), 87–90 (1996).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Stocker, Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames, Bilirubin is an antioxidant of possible physiological importance, Science 235(4792), 1043–1046 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Nakagami, K. Toyomura, T. Kinoshita, and S. Morisawa, A beneficial role of bile pigments as an endogenous tissue protector: anti-complement effects of biliverdin and conjugated bilirubin, Biochim Biophys Acta 1158(2), 189–193 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    F.A. Haimovitz, C. Cordon-Cardo, S. Bayoumy, M. Garzotto, M. McLoughlin, M. Gallily, C. Edwards III, E.H. Schuchman, Z. Fuks, and R. Kolesnick, Lipopolysaccharide induces disseminated endothelial cell apoptosis requiring ceramide, J Exp Med 186(11), 1831–1841 (1997).CrossRefGoogle Scholar
  32. 32.
    T. Bombeli, A. Karsan, J.F. Tait, and J.M. Harlan, Apoptotic vascular endothelial cells become procoagulant, Blood 89(7), 2429–2442 (1997).PubMedGoogle Scholar
  33. 33.
    L.C. Korb and J.M. Ahearn, Clq binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited, J Immunol 158(10), 4525–4528 (1997).PubMedGoogle Scholar
  34. 34.
    T. Bombeli, B.R. Schwartz, and J.M. Harlan, Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets, Blood 93(11), 3831–3838 (1999).PubMedGoogle Scholar
  35. 35.
    C. Ferris, S. Jaffrey, A. Sawa, M. Takahashi, S. Brady, R. Barrow, S. Tysoc, H. Wolosker, D. Baranano, S. Dore, K. Poss, and S.H. Snyder, Haem oxygenase-1 prevents cell death by regulating cellular iron, Nat Cell Biol 1(••) 152–157 (1999).PubMedCrossRefGoogle Scholar
  36. 36.
    N.L. Tilney and R.D. Guttmann, Effects of initial ischemia/reperfusion injury on the transplanted kidney, Transplantation 64(7), 945–947 (1997).PubMedCrossRefGoogle Scholar
  37. 37.
    PR. Kvietys and D.N. Granger, Endothelial cell monolayers as a tool for studying microvascular pathophysiology, Am J Physiol 273(6 Pt 1), G1189–1199 (1997).PubMedGoogle Scholar
  38. 38.
    M.B. Grisham, D.N. Granger, and D.J. Lefer, Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease, Free Radic Biol Med 25(4-5), 404–433 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    N. Maulik, H.S. Sharma, and D.K. Das, Induction of the haem oxygenase gene expression during the reperfusion of ischemic rat myocardium, J Mol Cell Cardiol 28(6), 1261–1270 (1996).PubMedCrossRefGoogle Scholar
  40. 40.
    H. Kato, F. Amersi, R. Buelow, J. Melinek, A.J. Coito, B. Ke, R.W. Busuttil, and J.W. Kupiec- Weglinski, Heme oxygenase-1 overexpression protects rat livers from ischemia/reperfusion injury with extended cold preservation, Am J Transpl 1(••) 121–128 (2001).CrossRefGoogle Scholar
  41. 41.
    T. Fujita, K. Toda, A. Karimova, S.F. Yan, Y. Naka, S.F. Yet, and D.J. Pinsky, Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis, Nat Med 7(5), 598–604(2001).PubMedCrossRefGoogle Scholar
  42. 42.
    C. Clayberger, P. Parham, J. Rothbard, D.S. Ludwig, G.K. Schoolnik, and A.M. Krensky, HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes, Nature 330(6150), 763–765 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    P. Parham, C. Clayberger, S.L. Zorn, D.S. Ludwig, G.K. Schoolnik, and A.M. Krensky, Inhibition of alloreactive cytotoxic T lymphocytes by peptides from the alpha 2 domain of HLA-A2, Nature 325(6105), 625–628 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Iyer, J. Woo, M.C. Cornejo, L. Gao, W. McCoubrey, M. Maines, and R. Buelow, Characterization and biological significance of immunosuppressive peptide D2702.75-84(E → V) binding protein. Isolation of heme oxygenase-1, J Biol Chem 273(5), 2692–2697 (1998).PubMedCrossRefGoogle Scholar
  45. 45.
    M.C. Cuturi, R. Josien, P. Douillard, C. Pannetier, D. Cantarovich, H. Smit, S. Menoret, P. Pouletty, C. Clayberger, and J.P Soulillou, Prolongation of allogeneic heart graft survival in rats by administration of a peptide (a.a. 75-84) from the alpha 1 helix of the first domain of HLA-B7 01, Transplantation 59(5), 661–669 (1995).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Buelow, P. Veyron, C. Clayberger, P. Pouletty, and J.L. Touraine, Prolongation of skin allograft survival in mice following administration of ALLOTRAP, Transplantation 59(4), 455–460 (1995).PubMedGoogle Scholar
  47. 47.
    S. Brouard, M.C. Cuturi, P. Pignon, R. Buelow, P. Loth, A. Moreau, and J.P. Soulillou, Prolongation of heart xenograft survival in a hamster-to-rat model after therapy with a rationally designed immunosuppressive peptide, Transplantation 67(12), 1614–1618 (1999).PubMedCrossRefGoogle Scholar
  48. 48.
    M. Giral, C. Taddei, J.M. Nguyen, J. Dantal, M. Hourmant, D. Cantarovich, G. Blancho, D. Ancelet, and J.P. Soulillou, Single-center analysis of 468 first cadaveric kidney allografts with a uniform ATG-CsA sequential therapy, Clin Transpl 257-264 (1996).Google Scholar
  49. 49.
    B. Murphy, K.S. Kim, R. Buelow, M.H. Sayegh, and W.W. Hancock, Synthetic MHC class I peptide prolongs cardiac survival and attenuates transplant arteriosclerosis in the Lewis → Fischer 344 model of chronic allograft rejection, Transplantation 64(1), 14–19 (1997).PubMedCrossRefGoogle Scholar
  50. 50.
    M.C. Cuturi, F. Christoph, J. Woo, S. Iyer, S. Brouard, J.M. Heslan, P. Pignon, J.P. Soulillou, and R. Buelow, RDP1258, a new rationally designed immunosuppressive peptide, prolongs allograft survival in rats: analysis of its mechanism of action, Mol Med 5(12), 820–832 (1999).PubMedGoogle Scholar
  51. 51.
    J. Woo, S. Iyer, M.C. Cornejo, N. Mori, L. Gao, I. Sipos, M. Maines, and R. Buelow, Stress protein-induced immunosuppression: inhibition of cellular immune effector functions following overexpression of haem oxygenase (HSP 32), Transpl Immunol 6(2), 84–93 (1998).PubMedCrossRefGoogle Scholar
  52. 52.
    L.E. Otterbein, F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat Med 6(4), 422–428 (2000).PubMedCrossRefGoogle Scholar
  53. 53.
    H. Azuma and N.L. Tilney, Chronic graft rejection, Curr Opin Immunol 6(5), 770–776 (1994).PubMedCrossRefGoogle Scholar
  54. 54.
    P.S. Russell, C.M. Chase, H.J. Winn, and R.B. Colvin, Coronary atherosclerosis in transplanted mouse hearts.I. Time course and immunogenetic and immunopathological considerations, Am J Pathol 144(2), 260–274 (1994).PubMedGoogle Scholar
  55. 55.
    W.W. Hancock, R. Buelow, M.H. Sayegh, and L.A. Turka, Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes, Nat Med 4(12), 1392–1396(1998).PubMedCrossRefGoogle Scholar
  56. 56.
    H.J. Duckers, M. Boehm, A.L. True, S.F. Yet, H. San, J.L. Park, R. Clinton Webb, M.E. Lee, G.J. Nabel, and E.G. Nabel, Heme oxygenase-1 protects against vascular constriction and proliferation, Nat Med 7(6), 693–698 (2001).PubMedCrossRefGoogle Scholar
  57. 57.
    G.R Alexandre, J.P. Squifflet, M. De Bruyere, D. Latinne, R. Reding, P. Gianello, M. Carlier, and Y. Pirson, Present experiences in a series of 26 ABO-incompatible living donor renal allografts, Transpl Proc 19(6), 4538–4542 (1987).Google Scholar
  58. 58.
    M. Slapak, R.B. Naik, and H.A. Lee, Renal transplant in a patient with major donor-recipient blood group incompatibility: reversal of acute rejection by the use of modified plasmapheresis, Transplantation 31(1), 4–7 (1981).PubMedCrossRefGoogle Scholar
  59. 59.
    L.J. West, S.M. Pollock-Barziv, A.L Dipchand, K.J. Lee, C.J. Cardella, L.N. Benson, I.M. Rebeyka, and J.G. Coles, ABO-incompatible heart transplantation in infants, N Engl J Med 344(11), 793–800 (2001).PubMedCrossRefGoogle Scholar
  60. 60.
    F.H. Bach, M.A. Turman, G.M. Vercellotti, J.L. Platt, and A.P. Dalmasso, Accommodation: a working paradigm for progressing toward clinical discordant xenografting., Transpl Proc 23(1 Pt 1), 205–207 (1991).Google Scholar
  61. 61.
    M.P. Soares, Y. Lin, K. Sato, K.M. Stuhlmeier, and F.H. Bach, Accommodation, Immunol Tod 20(10), 434–437 (1999).CrossRefGoogle Scholar
  62. 62.
    R. Hasan, Van, den, Bogaerde, Jb, J. Wallwork, and D.J. White, Evidence that long-term survival of concordant xenografts is achieved by inhibition of antispecies antibody production, Transplantation 54(3), 408–413 (1992).PubMedCrossRefGoogle Scholar
  63. 63.
    N. Koyamada, T. Miyatake, D. Candinas, W. Mark, P. Hechenleitner, W.W. Hancock, M.P. Soares, and F.H. Bach, Transient complement inhibition plus T-cell immunosuppression induces long-term survival of mouse-to-rat cardiac xenografts, Transplantation 65(9), 1210–1215 (1998).PubMedCrossRefGoogle Scholar
  64. 64.
    M.P. Soares, Y. Lin, K. Sato, K. Takigami, J. Anrather, C. Ferran, S.C. Robson, and F.H. Bach, Pathogenesis of and potential therapies for delayed xenograft rejection, Cur Opin Org Transpl 4(••) 80–89 (1999).CrossRefGoogle Scholar
  65. 65.
    T. Miyatake, K. Sato, K. Takigami, N. Koyamada, W.W. Hancock, H. Bazin, D. Latinne, F.H. Bach, and M.P. Soares, Complement-fixing elicited antibodies are a major component in the pathogenesis of xenograft rejection, J Immunol 160(8), 4114–4123 (1998).PubMedGoogle Scholar
  66. 66.
    Y. Lin, M.P. Soares, K. Sato, E. Csizmadia, S.C. Robson, N. Smith, and F.H. Bach, Long-term survival of hamster hearts in presensitized rats, J Immunol 164(9), 4883–4892 (2000).PubMedGoogle Scholar
  67. 67.
    F.H. Bach, C. Ferran, P. Hechenleitner, W. Mark, N. Koyamada, T. Miyatake, H. Winkler, A. Badrichani, D. Candinas, and W.W. Hancock, Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment, Nat Med 3(2), 196–204 (1997).PubMedCrossRefGoogle Scholar
  68. 68.
    K. Sato, K. Takigami, T. Miyatake, E. Czismadia, D. Latinne, H. Bazin, F.H. Bach, and M.P. Soares, Suppression of delayed xenograft rejection by specific depletion of elicited antibodies of the IgM isotype, Transplantation 68(6), 844–854 (1999).PubMedCrossRefGoogle Scholar
  69. 69.
    Y. Lin, M.P. Soares, K. Sato, K. Takigami, E. Csizmadia, N. Smith, and F.H. Bach, Accommodated xenografts survive in the presence of anti-donor antibodies and complement that precipitate rejection of naive xenografts, J Immunol 163(5), 2850–2857 (1999).PubMedGoogle Scholar
  70. 70.
    T. Berney and C. Ricordi, Islet cell transplantation: the future?, Langenbecks Arch Surg 385(6), 373–378 (2000).PubMedCrossRefGoogle Scholar
  71. 71.
    A.M. Shapiro, J.R. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman, and R.V. Rajotte, Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, N Engl J Med 343(4), 230–238 (2000).PubMedCrossRefGoogle Scholar
  72. 72.
    C. Benoist and D. Mathis, Cell death mediators in autoimmune diabetes-no shortage of suspects, Cell 89(1), 1–3(1997).PubMedCrossRefGoogle Scholar
  73. 73.
    T. Berney, R.D. Molano, P. Cattan, A. Pileggi, C. Vizzardelli, R. Oliver, C. Ricordi, and L. Inverardi, Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis, Transplantation 71(1), 125–132 (2001).PubMedCrossRefGoogle Scholar
  74. 74.
    S.T. Grey, M.B. Arvelo, W. Hasenkamp, F.H. Bach, and C. Ferran, A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB- dependent gene activation in islets, J Exp Med 190(8), 1135–1146(1999).PubMedCrossRefGoogle Scholar
  75. 75.
    J.L. Contreras, G. Bilbao, C.A. Smyth, X.L. Jiang, D.E. Eckhoft, S.M. Jenkins, F.T. Thomas, D.T. Curiel, and J.M. Thomas, Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic Bcl-2 gene, Transplantation 71(8), 1015–1023 (2001).PubMedCrossRefGoogle Scholar
  76. 76.
    N. Welsh and S. Sandier, Protective action by hemin against interleukin-1 beta induced inhibition of rat pancreatic islet function, Mol Cell Endocrinol 103(1-2), 109–114 (1994).PubMedCrossRefGoogle Scholar
  77. 77.
    J. Ye and S.G. Laychock, A protective role for heme oxygenase expression in pancreatic islets exposed to interleukin-1 beta, Endocrinology 139(10), 4155–4163 (1998).PubMedCrossRefGoogle Scholar
  78. 78.
    A. Pileggi, R.D. Molano, T. Berney, P. Cattan, C. Vizzardelli, R. Oliver, C. Fraker, C. Ricordi, R.L. Pastori, F.H. Bach, and L. Inverardi, Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation, Diabetes 50(9), 1983–1991 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • P. O. Berberat
    • 1
  • L. Günther
    • 1
    • 3
  • S. Brouard
    • 1
  • M. P. Soares
    • 1
    • 2
  • F. H. Bach
    • 1
  1. 1.Immunobiology Research Center Department of Surgery, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.Beth Israel Deaconess Medical Center, Department of Surgery, Immunobiology Research CenterHarvard Medical SchoolBostonUSA

Personalised recommendations