Noise in Refrigerating Tunnel Junctions and in Micorobolometers

  • D. V. Anghel
Conference paper

Abstract

The high sensitivity required for the astronomical observations of cosmic sources in the far-infrared (IR) or X-ray bands imposes very serious constraints on the construction of detectors. To minimize the noise and increase the response of the detectors, these experiments have to be carried out in space, at very low temperatures. A typical device, such as a bolometer or a calorimeter, consists of a thermal sensing element (TSE), connected to a heat sink (see Fig. 1). The TSE is formed of an absorber and a thermometer and can absorb directly high frequency electromagnetic radiation (X-rays) or can be coupled to an antenna that absorbs infra-red radiation (IR). The temperature of the detector usually has to be lowered to 100 mK or below to meet the sensitivity requirements. The last stage of cooling (from 300 to 100 mK) often poses significant difficulties in space-borne experiments both in system complexity and reliability.

Keywords

Microwave Calorimeter Arena Romania 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Edwards, Q. Niu, and A. L. Lozanne, Appl. Phys. Lett. 63, 1815 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    M. Nahum, T. M. Eiles, and J. M. Martinis, Appl. Phys. Lett. 65, 3123 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68, 1996 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    A. J. Manninen, M. M. Leivo, and J. P. Pekola, Appl. Phys. Lett. 70, 1885 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    M. M. Leivo, A. J. Manninen, and J. P. Pekola, Appl. Superconductivity 5, 227 (1998).CrossRefGoogle Scholar
  6. 6.
    P. A. Fisher, J. N. Ullom, M. Nahum, Appl. Phys. Lett. 74, 2705 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Pekola, D. V. Anghel, T. I. Suppula, J. K. Suoknuuti, A. J. Manninen, and M. Manninen, Appl. Phys. Lett. 76, 2782 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    M. M. Leivo, Ph. D. Thesis, University of Jyvaskyla, Finland, 1999.Google Scholar
  9. J. N. Ullom, Harvard University, USA, 1999.Google Scholar
  10. 10.
    R. Leoni, G. Arena, M. G. Castellano, and G. Torrioli, J. Appl. Phys. 85, 3877 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Pekola, A. J. Manninen, M. M. Leivo, K. Arutyunov, J. K. Suoknuuti, T. I. Suppula, and B. Collaudin, Physica B 280, 485 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    M.Bavdaz, J. A. Bleeker, G. Hasinger, H. Inoue, G. G. Palumbo, A. J. Peacock, A. N. Parmar, M. J. Turner, J. Truemper, and J. Schiemann, X-ray evolving universe spectroscopy mission (XEUS), in R. B. Hoover and A. B. Walker, editors, Proc. SPIE, volume 3766, pages 82––93, Bellingham WA, 1999. SPE.CrossRefGoogle Scholar
  13. 13.
    F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B 49, 5942 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, and M. Manninen, Phys. Rev. Lett. 81, 2958 (1998)ADSCrossRefGoogle Scholar
  15. D. V. Anghel and M. Manninen, Phys. Rev. B 59, 9854 (1999)ADSCrossRefGoogle Scholar
  16. M. M. Leivo and J. P. Pekola, Appl. Phys. Lett. 72, 1305 (1998) See also Ref. 8 and citations therein.ADSCrossRefGoogle Scholar
  17. 15.
    S. R. Golwala, J. Jochum, B. Sadoulet, Low Temperature Detectors 64 (1997).Google Scholar
  18. 16.
    D. Golubev and L. Kuzmin, to appear in J. Appl. Phys. (2001).Google Scholar
  19. J. P. Pekola private communication.Google Scholar
  20. A. M. Savin, M. Prunnila, P. P. Kivinen, J. P. Pekola, J. Ahopelto, A. J. Manninen, submitted.Google Scholar
  21. 19.
    D. V. Anghel, A. Luukanen, and J. P. Pekola, Appl. Phys. Lett. 78, 556 (2001).ADSCrossRefGoogle Scholar
  22. 20.
    D. V. Anghel and J. P. Pekola, J. Low Temp. Phys. 123, 197 (2001).CrossRefGoogle Scholar
  23. 21.
    F. Pobell, Matter and methods at low temperatures, second edition, Chap. 4, Springer-Verlag, Berlin Heidelberg, 1996.Google Scholar
  24. 22.
    K. D. Irwin, G. C. Hilton, D. A. Wollman, and J. M. Martinis, Appl. Phys. Lett. 69, 1945 (1996); A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin , Appl. Phys. Lett. 69, 1801 (1996); A. Luukanen, H. Sipila, K. Kinnunen, A. Nuottajarvi, J. P. Pekola, Physica B 284, 2133 (2000).ADSCrossRefGoogle Scholar
  25. A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin , Appl. Phys. Lett. 69, 1801 (1996); A. Luukanen, H. Sipila, K. Kinnunen, A. Nuottajarvi, J. P. Pekola, Physica B 284, 2133 (2000)ADSCrossRefGoogle Scholar
  26. 23.
    M. Nahum and J. M. Martinis, Appl. Phys. Lett. 3, 3075 (1993)ADSCrossRefGoogle Scholar
  27. M. Nahum and J. M. Martinis, Appl. Phys. Lett. 66, 3203 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • D. V. Anghel
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of OsloBlindernOsloNorway
  2. 2.NIPNE -- “HH”Bucuresti - MagureleRomania

Personalised recommendations