The Evolution of High Pressure Processing of Foods

  • Grahame W. Gould
Part of the Food Engineering Series book series (FSES)

Abstract

With few exceptions, foods lose quality at some rate or other following harvest, slaughter, or manufacture. The nature of the quality loss is dependent on the type of food; its composition, formulation, and processing; and conditions of storage. The most important quality-loss reactions, and thus the most important targets for preservation, include microbiological, enzymatic, chemical, and physical reactions (see Table 1-1) (Gould, 1989).

Keywords

Sugar Fermentation Mold Lipase Propionate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abee, T., & Delves-Broughton, J. (in press). In N.J. Russell, & G.W. Gould (Eds.), (2nd ed.). Gaithersburg, MD: Aspen.Google Scholar
  2. Abee, T., Krockel, L., & Hill, C. (1995). Bacteriocins: Modes of action and potential in food preservation and control of food poisoning. Int. J Food Microbiol., 28, 169–185.CrossRefGoogle Scholar
  3. Baranyi, J., & Roberts, T.A. (1995). Mathematics of predictive microbiology. Int. J Food Microbiol., 26, 199–218.CrossRefGoogle Scholar
  4. Baranyi, J., & Roberts, T.A. (2000). Principles and application of predictive modeling of the effects of preservative factors on microorganisms. In B.M. Lund, A.C. Baird-Parker, & G.W. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 342–358). Gaithersburg, MD: Aspen.Google Scholar
  5. Barbosa-Canovas, G.V., Pothakamury, U.R., & Swanson, B.G. (1995). State of the art technologies for the sterilization of foods by nonthermal processes: Physical methods. In G.V. BarbosaCanovas, & J. Welti-Chanes (Eds.), Food Preservation by Moisture Control: Fundamentals and Applications (pp. 493–532). Lancaster, PA: Technomic.Google Scholar
  6. Basset, J., & Macheboeuf, M.A. (1932). Etude sur les effets biologiques des ultrapressions: Resistance de bacteries, de diastases et toxines aux pressions tres elevees. Comptes Rendus, 196, 1431–1442.Google Scholar
  7. Basset, J., & Macheboeuf, M.A. (1933). Etudes sur les effets biologiques des ultrapressions. Etudes sur l’immunite: Influence des pressions tres elevees sur certain antigenes et anticorps. Comptes Rendus, 197, 67–68.Google Scholar
  8. Basset, J., Macheboeuf, M., & Sandor, G. (1933). Etude sur les effets biologique des ultrapressions. Action des pressions tres elevees sur les proteides. Comptes Rendus, 197, 796–798.Google Scholar
  9. Booth, I.R. (1998). Bacterial responses to osmotic stress: Diverse mechanisms to achieve a common goal. In D.S. Reid (Ed.), The Properties of Water in Foods ISOPOW 6 (pp. 456–485). London: Blackie Academic & Professional.CrossRefGoogle Scholar
  10. Bridgman, P.W. (1914). The coagulation of egg albumin by pressure. J Biol. Chem., 19, 511–512.Google Scholar
  11. Cheftel, J.C. (1995). Review: High pressure, microbial inactivation and food preservation. Food Sci. Technol. Int., 1, 75–90.CrossRefGoogle Scholar
  12. Chlopin, G.W., & Tammann, G. (1903). Eber den einflus hoher drucke auf mikrooganismen. Zeitschrift fur Hygiene and Infectionskrankheiten, 45, 171.Google Scholar
  13. Christian, J.H.B. (2000). Drying and reduction in water activity. In B.M. Lund, A.C. Baird-Parker, & G.W. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 146–174). Gaithersburg, MD: Aspen.Google Scholar
  14. Clouston, J.G., & Wills, P.A. (1969). Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. J Bacteriol., 97, 684–690.Google Scholar
  15. Clouston, J.G., & Wills, P.A. (1970). Kinetics of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. J Bacteriol., 103, 140–143.Google Scholar
  16. Corry, J.E.L. (1974). The effect of sugars and polyols on the heat resistance of salmonellae. J Appl. Bacteriol., 37, 31–43.CrossRefGoogle Scholar
  17. Corry, J.E.L. (1976). The effect of sugars and polyols on the heat resistance and morphology of osmophilic yeasts. Appl. Bacteriol., 40, 269–276.CrossRefGoogle Scholar
  18. Costa, J.L., & Hoffman, G.A. (1987). Malignancy treatment. U.S. Patent 4,665,898.Google Scholar
  19. Crossland, B. (1995). The development of high pressure equipment. In D.A. Ledward, D.E. Johnston, R.G. Earnshaw, & A.P.M. Hasting (Eds.), High Pressure Processing of Foods (pp. 7–26). Nottingham: Nottingham University Press.Google Scholar
  20. Cruess, W.V. (1924). Commercial Fruit and Vegetable Products. New York: McGraw-Hill.Google Scholar
  21. Davidson, P.M., & Brannen, A.L. (Eds.). (1993). Antimicrobials in Foods. New York: Marcel Dekker.Google Scholar
  22. Dillon, V.M., & Board, R.G. (Eds.). (1994). Natural Antimicrobial Systems and Food Preservation. Wallingford, Oxon: CAB International.Google Scholar
  23. Dunn, J.E., Clark, R.W., Asmus, J.F., Pearlman, IS., Boyer, K., & Parrichaud, F. (1988). Method and apparatus for preservation of foodstuffs. International Patent W088/03369.Google Scholar
  24. Eklund, T. (1983). The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl. Bacteriol., 54, 383–389.CrossRefGoogle Scholar
  25. Ekstrand, B. (1994). Lactoperoxidase and lactoferrin. In V.M. Dillon, & R.G. Board (Eds.), Natural Antimicrobial Systems and Food Preservation (pp. 15–63). Wallingford, Oxon: CAB International.Google Scholar
  26. Giddings, N.J., Alland, A.H., & Hite, B.H. (1929). Inactivation of tobacco-mosaic virus by high pressures. Phytopathology, 19, 749–750.Google Scholar
  27. Gould, G.W. (Ed.) (1989). Mechanisms ofAction of Food Preservation Procedures. Barking, Essex: Elsevier Applied Science.Google Scholar
  28. Gould, G.W. (Ed.). (1995a). New Methods of Food Preservation. Glasgow: Blackie Academic & Professional.CrossRefGoogle Scholar
  29. Gould, G.W. (1995b). Homeostatic mechanisms during food preservation by combined methods. In G.V. Barbosa-Canovas, & G. Welti-Chanes (Eds.), Food Preservation by Moisture Control: Fundamentals and Applications (pp. 397–410). Lancaster, PA: Technomic.Google Scholar
  30. Gould, G.W., & Sale, A.J.H. (1970). Initiation of germination of bacterial spores by hydrostatic pressure..1 Gen. Microbiol., 60, 335–346.CrossRefGoogle Scholar
  31. Hauben, K.J.A., Wuytack, E.Y., Soontjens, C.C.F., & Michiels, C.W. (1996). High-pressure transient sensitization of Escherichia coli to nisin and lysozyme by disruption of outer-membrane permeability. J Food Prot., 59, 350–355.Google Scholar
  32. Herbert, R.A., & Sutherland, J.P. (2000). Chill storage. In B.M. Lund, A.C. Baird-Parker, & G. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 101–121). Gaithersburg, MD: Aspen.Google Scholar
  33. Hite, B.H. (1899). The effect of pressure in the preservation of milk. Bull. West Virg. Univ. Agric. Exp. Station, 58, 15–35.Google Scholar
  34. Hite, B.H., Giddings, N.J., & Weakley, C.W. (1914). The effect of pressure on certain microorganisms encountered in the preservation of fruits and vegetables. Bull. of the West Virg. Univ. Agric. Exp. Station, 146, 1–67.Google Scholar
  35. Hoffman, G.A. (1985). Inactivation of microorganisms by an oscillating magnetic field. International Patent W085/02094.Google Scholar
  36. Hoover, D.G. (2000). Microorganisms and their products in the preservation of foods. In B.M. Lund, A.C. Baird-Parker, & G.W. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 251–276). Gaithersburg, MD: Aspen.Google Scholar
  37. Kalchayanand, N., Sikes, T., Dunne, C.P., & Ray, B. (1994). Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Appl. Environ. Microbiol., 60, 4174–4177.Google Scholar
  38. Larson, WE, Hartzell, T.B., & Diehl, H.S. (1918). The effect of high pressure on bacteria. J Infect. Dis., 22, 271–279.CrossRefGoogle Scholar
  39. Leistner, L. (1995). Use of hurdle technology in food: Recent advances. In G.V. Barbosa-Canovas, & G. Welti-Chanes (Eds.), Food Preservation by Moisture Control: Fundamentals and Applications (pp. 377–396). Lancaster, PA: Technomic.Google Scholar
  40. Leistner, L., & Gorris, L.G.M. (1995). Food preservation by hurdle technology. Trends Food Sci. Technol., 6,41–46.CrossRefGoogle Scholar
  41. Lund, B.M., Baird-Parker, A.C., & Gould, G.W. (Eds.). (2000). The Microbiological Safety and Quality of Food. Gaithersburg, MD: Aspen.Google Scholar
  42. Macfarlane, J.J. (1973). Pre-rigor pressurization of muscle: Effects on pH, shear value and taste panel assessment. J Food Sci., 38, 294–298.CrossRefGoogle Scholar
  43. Molin, G. (2000). Modified atmospheres. In B.M. Lund, A.C. Baird-Parker, & G.W. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 214–234).Google Scholar
  44. Gaithersburg, MD: Aspen. Murrell, W.G., & Scott, W.J. (1966). Heat resistance of bacterial spores at various water activities. J Gen. Microbiol., 43, 411–425.CrossRefGoogle Scholar
  45. Notermans, S, Dufrenne, J., & Lund, B.M. (1990). Botulism risk of refrigerated processed foods of extended durability. J Food Prot., 53, 1020–1024.Google Scholar
  46. Patterson, M., & Loaharanu, P. (2000). Food irradiation. In B.M. Lund, A.C. Baird-Parker, & G.W. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 65–100). Gaithersburg, MD: Aspen.Google Scholar
  47. Patterson, M.F., Quinn, M., Simpson, R., & Gilmour, A. (1995a). Effects of high pressure on vegetative pathogens. In D.A. Ledward, D.E. Johnston, R.G. Earnshaw, and A.P.M. Hasting (Eds.), High Pressure Processing of Foods (pp. 47–63). Nottingham: University Press.Google Scholar
  48. Patterson, M.F., Quinn, M., Simpson, R., & Gilmour, A. (1995b). Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and in foods. J Food Prot., 58, 524–529.Google Scholar
  49. Payens, T.A.J., & Heremans, K. (1969). Effect of pressure on the temperature-dependent association of p-casein. Biopolymers, 8, 335–345.CrossRefGoogle Scholar
  50. Perkins, J. (1820). On the compressability of water. Philosphical Trans. R. Soc., 110, 324–329.CrossRefGoogle Scholar
  51. Perkins, J. (1826). On the progressive compression of water by a high degree of force, with trials on the effect of other fluids. Philosophical Trans. R. Soc., 116, 541–547.CrossRefGoogle Scholar
  52. Pflug, I.J., & Gould, G.W. (2000). Heat treatment. In B.M. Lund, A.C. Baird-Parker, & G.W. Gould (Eds.), The Microbiological Safety and Quality of Food (pp. 36–64). Gaithersburg, MD: Aspen.Google Scholar
  53. Qin, B.L., Pothakamury, U.R., Barbosa-Canovas, G.V., & Swanson, B.G. (1996). Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit. Rev. Food Sci. Nutr., 36, 603–627.CrossRefGoogle Scholar
  54. Raso, J., Palop, A., Pagan, R., & Condon, S. (1998). Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl. Microbiol., 85, 849–854.CrossRefGoogle Scholar
  55. Roberts, C.M., & Hoover, D.G. (1996). Sensitivity of Bacillus coagulans spores to combinations of hydrostatic pressure, heat, acidity and nisin. J. Appl. Bacteria, 81, 363–368.Google Scholar
  56. Rooney, J., Midda, M., & Leeming, J. (1994). A laboratory investigation of the bactericidal effect of a Nd:Yag laser. Br. Dent. J, 176, 61–64.CrossRefGoogle Scholar
  57. Russell, N.J., & Gould, G.W. (Eds.). (2000). Food Preservatives (2nd ed.). Gaithersburg, MD: Aspen.Google Scholar
  58. Sala, F.J., Burgos, J., Condon, S., Lopez, R, & Raso, J. (1995). Effect of heat treatment and ultrasound on microorganisms and enzymes. In G.W. Gould (Ed.), New Methods of Food Preservation (pp. 176–204). Glasgow: Blackie Academic & Professional.CrossRefGoogle Scholar
  59. Sale, A.J.H., Gould, G.W., & Hamilton, W.A. (1970). Inactivation of bacterial spores by hydrostatic pressure. J Gen. Microbiol., 60, 323–334.CrossRefGoogle Scholar
  60. Tapia de Daza, M.S., Alzamora, S.M., & Welti-Chanes, G. (1996). Combination of preservative factors applied to minimal processing of foods. Crit. Rev. Food Sci. Nutr., 36, 629–659.CrossRefGoogle Scholar
  61. Timson, W.J., & Short, A.J. (1965). Resistance of microorganisms to hydrostatic pressure. Biotechnol. Bioeng., 7, 139–159.CrossRefGoogle Scholar
  62. WHO. (1999). High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a Joint FAO/IAEA/WHO Study Group. WHO Technical Report Series 890. Geneva: World Health Organization.Google Scholar
  63. Wills, P.A. (1974). Effects of hydrostatic pressure and ionizing radiation on bacterial spores. Atomic Energy Aust., 17, 2–10.Google Scholar
  64. Zhang, Q., Qin, B.L., Barbosa-Canovas, G.V., & Swanson, B.G. (1995). Inactivation of E. coli for food pasteurization by high strength pulsed electric fields. J Food Proc. Preserv., 19, 103–118.CrossRefGoogle Scholar
  65. Zipp, A., & Kauzmann, W (1973). Pressure denaturation of metmyoglobin. Biochemistry, 12, 4217–4228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Grahame W. Gould

There are no affiliations available

Personalised recommendations