Electrophysiological Effects of Cannabinoids in the Basal Ganglia

  • Anna Lisa Muntoni
  • Miriam Melis
  • Marco Diana
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)

Abstract

The hemp plant contains more than 416 chemicals of which more than 60 are cannabinoids (Turner. 1984). These compounds have been known for their therapeutic and psychoactive properties for at least 4000 years. The principal rleuroactive constituent is Δ9-tetrahydrocannabinol (Δ9-TAC), often used as the prototype of the entire cannabinoid family due to its presence in derivatives ofcannabis sativa(marijuana and hashish) used by humans recreationally. Δ9-THC is, like other cannabinoids, highly lipophilic and for some time cannabinoid actions were thought to be mediated by nonspecific disruption of cellular membranes, which may inhibit or stimulate membrane-associated enzymes and alter ion channels (Hillardet al..1985; Martin, 1986; Felderet al..1992). However, in the early ‘80s, cannabinoid receptors have been cloned (Matsudaet al., 1990), localized in rodent brain (Herkenhametal.,1990; Matsudaetal.,1993 and periphery (Munroet aí.,1993), and putative endogenous ligands identified (Mechoulam and Hanus 2000; Martinet al., 1999 and references therein). Today unanimous consensus exists regarding most, but not all, cannabinoid effects as receptor-mediated through Gprotein-coupled CB1 and CB2 receptors, spectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto, M.D., Scates, S.M.. Lowe. J.A. and Martin. B.R., 1995. Cannabinoid precipitated withdrawal by the selective cannabinoid receptor antagonist, SR 141716A.Eur. J. Pharmacol.282: R1–R2.PubMedCrossRefGoogle Scholar
  2. Bouaboula, M., Rinaldi-Carmona, M., Carayon. P., Carillon, C.. Delpech, B., Shire, D., Le Fur, G. and Casellas, P., 1993, Cannabinoid-receptor expression in human leukocytesEur J Biochem214: 173–180.PubMedCrossRefGoogle Scholar
  3. Bouaboula, M., Poirot-Chazei. C., Borrie, B., Carat- N., Calandra, B., Rinaldi-Carmona, M.. Le Fur. G. and Casellas, P., 1995, Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1.Biochem. J.312: 637–641.PubMedGoogle Scholar
  4. Bouaboula, M., Bianchini, L., McKenzie, F.R.. Pouyssegur. J. and Casellas. P., 1999, Cannabinoid receptor CB1 activates the Na+/H+ exchanger NHE-1 isoform via Gi-mediated mitogen activated protein kinase signaling transduction pathwaysFEBS Lett449: 61–65.PubMedCrossRefGoogle Scholar
  5. Breivogel, C.S., and Childers. S.R., 1998, The functional neuroanatomy of brain cannabinoid receptors.Neurobiol of Disease5: 417–431.CrossRefGoogle Scholar
  6. Breivogel, C.S., Selley, D.E. and Childers, S.R.. 1998. Cannabinoid receptor agonist efficacy for stimulating [35SIGTPYS binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity.J. Biol. Chem.273: 16865–16873.PubMedCrossRefGoogle Scholar
  7. Breivogel, C.S.. Griffin, G., Di Marzio, V., and Martin, B.R., 2001, Evidence for a new G protein-coupled cannabinoid receptor in mouse brain.Mol. Pharmacol.60: 155–163.PubMedGoogle Scholar
  8. Buckley, N.E., McCoy, K.L., Mezey, E., Bonner, T., Zimmer, A, Felder, C.C., Glass, M.. and Zimmer, A., 2000 Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor.Eur J Pharmacol396(2–3): 141–149.PubMedCrossRefGoogle Scholar
  9. Canfield, M.P. and Brown, D.A., 1992, Cannabinoid receptor agonists inhibit Ca“ current in NG108–15 neuroblastoma cells via a pertussis toxin-sensitive mechanism.Br. J. Pharmacol.106: 231–232.CrossRefGoogle Scholar
  10. Chan, P.K., Chan, S.C. and Yung, W.JJ., 1998, Presynaptic inhibition of GABAergic inputs to rat substantia nigra pars reticulata neurones by a cannabinoid agonist.Neuroreport.9: 671–675.PubMedCrossRefGoogle Scholar
  11. Chaperon, F. and Thiebot, M.H., 1999, Behavioral effects of cannabinoid agents in animals.Crit. Rev. Neurobiol.13: 243–281.PubMedGoogle Scholar
  12. Chen, J., Paredes, W., Lowitison, J.H. and Gardner, E.L,., 1990, Delta 9-tetrahydroeannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex.Eur. J. Pharmacol.190: 259–262.PubMedCrossRefGoogle Scholar
  13. Clifford, D.B., 1983, Tetrahydrocannabinol for tremor in multiple sclerosis.Ann. Neurol.13: 669–671.PubMedCrossRefGoogle Scholar
  14. Deadwyler, S.A., Hampson, R.E., Mu, J.. White, A. and Childers, S.R., 1995. Cannabinoids modulate voltage-sensitive potassium A-current in hippocampal neurons via a cAMP dependent process.J. Pharmacol. Exp. 7’her.273: 734–743.Google Scholar
  15. Devane, W.A., Hanes, L., Breuer, A., Pertwee, R.G., Stevenson, L.A., Griffin, G., Gibson, D., Mandielbau, A., Etinger, A. and Mechoulam, R., 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science258:1946–1949.PubMedCrossRefGoogle Scholar
  16. Dewey, W.L., 1986, Cannabinoid Pharmacology.Pharmacol. Rev.38: 51–178.Google Scholar
  17. Diana, M., 1998, Drugs of abuse and dopamine cell activity. In: Advances in Pharmacology, D. Goldstein, G. Eisenhofer and R. McCarty, ed., Academic Press vol 42, pp.998–1001.Google Scholar
  18. Diana, M., Melis, M. and Gessa, G.L., 1998a. Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids.Eur J. Neurosci.10(9): 2825–2830.PubMedCrossRefGoogle Scholar
  19. Diana, M., Melis, M., Munto i, A.L. and Gessa, G.L., 1998b, Mesolin bic dopaminergic decline after cannabinoid withdrawal.Proc. Nat. Acad. Sci. US495: 10269–10273.CrossRefGoogle Scholar
  20. Di Chiara G, and Imperato A., 1988, Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.Proc. Natl..4cad. Sci. USA85: 5274–5278.CrossRefGoogle Scholar
  21. Di Marzio. V., Melck, D., Bisogno, T., and De Petrocellis, L, 1998, Endocannabinoids: endogenous cannabinoid receptor ligands netromodulatory action.Trends Neurosci.21: 521–528.CrossRefGoogle Scholar
  22. Di Marzio, V., Hill, M.P., Bisogno, T., Croman. A.R., and Brotchie, J.M., 2000. Enhanced levels of endogenous cannabinoids in the globes pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease.F.4SEB J.14: 1432–1438.Google Scholar
  23. Di Marzio, V., Goparaju, S.K., Wang, L, Liu, J., Baikal, S., Jarai, Z., Fezza, F., Miura, G.I., Palmiter. Sugiura, T. and Kwtos, G., 2001, Leptin-regulated endocannabinoidsareinvolved in mataining food intake.Nature410: 822–825.CrossRefGoogle Scholar
  24. Dove Pettit, D.A., Harrison, M.P., Olson, J.M., Spencer, R.F. and Cabral, G. A, 1998, Immunohistochemical localization of the neural cannabinoid receptor in rat brainJ. Neurosci. Res.51: 391–402.CrossRefGoogle Scholar
  25. Donnell, S.B., and Bjorklund, A, 1999. Prospects fornewrestorative and neuroprotective treatments in Parkinson’s disease.Nature399 (6738 Suppl): A32–39.Google Scholar
  26. Fallon, J.H. and Loughlin, S.E., 1995, Substancia nigra InThe rat nervous system(ed. Paxinos G.), pp 215–237. Academic. San Diego.Google Scholar
  27. Felder, C.C., Nielsen, A, Briley, E.M. andMatsuda,LA, 1992, Cannabinoid agonists stimulate both receptor and non-receptor-mediated signal transduction pathways in cells transfected with and expressing canxnabinoid receptor clones.Mol. Pharmacol.42: 838–845.PubMedGoogle Scholar
  28. Felder, C.C., Joyce, K.E.. Briley, E.M., Glass, M., Mackie, K.P., Fahey. K.J., Cullinam, G.J., Hunden, D.C., Johnson. D., Chaney. M.O., Koppel, G.A. and Brownstein, M., 1998. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation.J. Pharmacol. Exp. Ther.284: 291–297.PubMedGoogle Scholar
  29. Fletcher, J.M.. Page, J.B., Francis, D.J., Copeland, K., Naus, M.J., Davis, C.M., Morris, R., Krauskopf, D. and Satz, P., 1996, Cognitive correlates of long-term cannabis use in Costa Rican men.Arch. Gen. Psychiatry53: 1051–1057.PubMedCrossRefGoogle Scholar
  30. French, E.D., Dillon. K. and Wu, X., 1997, Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra.Neuroreport8: 649–652.PubMedCrossRefGoogle Scholar
  31. French. E.D., 1997. delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CBI but not opioid receptors.Neurosci Lett226:159–162.PubMedCrossRefGoogle Scholar
  32. Fuentes, J.A., Ruiz-Gayo, M., Manzanares,J., Vela, G., Reche, I. and Corchero, J., 1999, Cannabinoids as potential new analgesics.Life Sci.65: 675–685.Google Scholar
  33. Galve-Ropher, I., Sanchez, C., Cortes, M.L., del Pulgar, T.G., Izquierdo, M., and Guzman, M., 2000, Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation.Nat flied6: 313–319.Google Scholar
  34. Gerdeman, G., and Lovinger, D.M., 2001, CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum.J. Physiol.85(1): 468–471.Google Scholar
  35. Gessa, G.L., Melis, M., Muntoni, AL. and Diana, M.. 1998, Cannabinoids activate mesolimbic dopamine neurons by an action on CB1 receptors.Eur. J. Pharmacol.341: 39–44.PubMedCrossRefGoogle Scholar
  36. Gifford, AN., Gal &., E.L. and Ashby, C.R. Jr., 1997, The effect of intravenous administration of delta-9tetrahydrocannabinol on the activity of A10 dopamine neurons recorded in vivo in anesthetized rats.Neuropsychobiology36: 96–99.PubMedCrossRefGoogle Scholar
  37. Glass, M., Faull, R.L. and Dragunow, M., 1993, Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease.Neuroscience.56:523–527.PubMedCrossRefGoogle Scholar
  38. Glass, M. and Felder, C.C., 1997, Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augmented cAMP accumulation in striatal neurons: Evidence for a Gs linkage to the CB1 receptor.J. Neurosci.17: 5327–5333.PubMedGoogle Scholar
  39. Glass, M., Dragunow, M. and Faull, R.L.M., 1997a, Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain.Neuroscience77: 299–318.PubMedCrossRefGoogle Scholar
  40. Glass, M., Brotchie, J.M., and Maned, Y.P., 1997b, Modulation of neurotransmission by cannabinoids in the basal ganglia.Eur. J. Neurosci9: 199–203.PubMedCrossRefGoogle Scholar
  41. Grirspoon L, and Bakalar J.B.. 1995, Marihuana as medicine: a plea for reconsideration.J.A.AL4.273: 1875–1876.Google Scholar
  42. Heishman, S.J., Arasteh, K. and Stitzer, M.L., 1997, Comparative effects of alcohol and marijuana on mood, memory and performance.Pharmacol. Biochem. & Behay.58: 93–101.CrossRefGoogle Scholar
  43. Herkenham, M., Lynn, AB., Little, M.D., Johnson, M.R., Melvin, L.S., De Costa, B.R. and Rice, K.C.. 1990, Cannabinoid receptorloeali7ationin brain.Proc. NatL Acad. Sci. USA87: 1932–1936.PubMedCrossRefGoogle Scholar
  44. Herkenham. M., Lynn, A.B., Johnson, M.R., Melvin, L.S., de Costa, B.R., and Rice, K.C., 1991a, Characterization and localization of cannabinoid receptor in the rat brain: a quantitative in vitro autoradiogeaphy study.J. Neurose:.11:563–583.Google Scholar
  45. Herkenham, M., Lynn, A.B., de Costa. B.R. and Richfield. E.K., 1991b. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat.Brain Res.547: 267–274.PubMedCrossRefGoogle Scholar
  46. Hillard, C.J., Harris, R.A. and Bloom, A.S.. 1985, Effects of the Cannabinoids on physical properties of brain membranes and phospholipid vesicles: Fluorescence studies.J. Pharmacol. Expel. Ther.232: 579–588.Google Scholar
  47. Howlett, A.C., Qualy, J.M. and Khachatrian, L.L., 1986, Involvement of Gi in the inhibition of adenylate cyclase by camabinomimetc drugs.Mol Pharmacol.29: 307–313.PubMedGoogle Scholar
  48. Holland, M., John Challisss, R.A., Standen, N.B. and Boyle, J.P., 1999, Cannabinoid CB1 receptor failed to cause relaxation, but couple via Gi/Go to the inhibition of adenylyl cyclase in carotid artery smooth muscle.BrJPharm128: 596–604.Google Scholar
  49. Huang, C.C., Lo, S.W., and Hsu, K.S., 2001, Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons.J. Physiol.532(3): 731–748.PubMedCrossRefGoogle Scholar
  50. Ishac, E.J., Jiang, L., Lake, K.D., Varga. K., Abood, M.E., and Ktmos, G. 19%, Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CBI receptor on peripheral sympathetic nerves.Br. J Pharmacol 118: 2023–2028.Google Scholar
  51. Khanolkar, A.D., Palmer, S.L., and Makriyaiz s, A., 2000, Molecular probes for the cannabinoid receptors. Chem. PhysLipids108(1–2): 37–52.PubMedCrossRefGoogle Scholar
  52. Ktazthaler, I., Hummer. M., Miller. C., Sperner-Unterweger. B., Gunther, V.. Wechdorn, H., Battista. H.J. and Fleischhacker, W.W., 1999,. Effect of cannabis use on cognitive functions and driving ability.J. Clin. Psychiatry60: 395–399.CrossRefGoogle Scholar
  53. Jentsch, J.D., Atdrt iak, E., Tran, A, Bowers, M.B. Jr and Roth, R.H., 1997, Delta 9-tetrahydrocannabinol increases prefrontal cortical utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966.Neuropsychopharnnacology16: 426–432.CrossRefGoogle Scholar
  54. Jentsch, J.D., Venico, C.D., Le, D. and Roth, R.H., 1998, Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat.Neurosci. Lett.246: 169–172.PubMedCrossRefGoogle Scholar
  55. Johnson, M.R, and Melvin, L.S., 1986, The discovery of non-classical cannabinoid analgesic. InCannabinoids as Therapeutic agentsC.R. Mechoulam ed., pp. 121–145.Google Scholar
  56. Johnson, S.W. and North, R.A., 1992, Opioids excite dopamine netwons by hyperpolarization of local interneurons.J. Neurosci12:483–488.PubMedGoogle Scholar
  57. Johnson, D.E., Rice, K.C., Howlett, A., Melvin, L.S., and Herkenham, M., 1992, The camabinoid receptor-pharmacological identification, anatomical localization and cloning.NIDA Res Monogr119: 86–90.PubMedGoogle Scholar
  58. Landsman, R.S., Burkey, T.H., Conroe, P., Roeske, W.R., and Yamamtra, H.I., 1997, SR141617A is an inverse agonist at the Maman cannabinoid CBI receptor.Eur. J. Pharmacol.334: R1–R2.PubMedCrossRefGoogle Scholar
  59. Ledert, C.. Valverde, O., Cossu, G., Petitet. F., Aubert, J.F., Beslot, F., Mime, G.A., Imperato, A., Pedrazzini, T., Roques, B.P., Vassart, G., Fratta, W., and Parmentier, M.. 1999, Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CBI receptor knockout mice.Science283: 401–404.CrossRefGoogle Scholar
  60. Licltman, AH., Dimen, K.R. and Martin, B.R., 1995, Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats.Psychopharmacology119: 282–290.CrossRefGoogle Scholar
  61. Liu, J., Mirshahi, F., Sanyal, A.J., Khanolkar, A.D., Makiryannis, A, and Ktmos, G., 2000, Functional CBI receptor in human vascular endothelial cells.Biochem J346: 835–840.PubMedCrossRefGoogle Scholar
  62. Lynn, A.B., and Hericenham. M., 1994, Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids.J Pharmacol Exp Ther268: 1612–1623.PubMedGoogle Scholar
  63. Mackie, K. and Hille, B., 1992, Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells.Proc. Natl. Acad. Sc. USA89: 3825–3829.CrossRefGoogle Scholar
  64. Mackie, K., Lai, Y., Westenbroek, R., and Mitchell, R., 1995, Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium cturenst in AtT20 cells cells transfected with rat brain catmabinoid receptor.J. Neurosci.15: 6552–6561.PubMedGoogle Scholar
  65. MacLennan, S.J., Reynen, P.H., Kwan, J, and Bonhaus, D.W., 1998, Evidence for inverse agonism of SR141617A at human recombinant cannabinoid CB1 and CB2 receptors.Br. J. Pharmacol.124: 619–622.PubMedCrossRefGoogle Scholar
  66. Mailleux, P, and Vanderhaeghen, J.J., 1992, Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons.Neurosci Lett.148:173–176.PubMedCrossRefGoogle Scholar
  67. Mailleux, P. and Vanderhaeghen, J.J., 1992a, Distribution of neural cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridisation histochemistry.Neuroscience83: 393–411.Google Scholar
  68. Maned Y.P. Brotchie. J.M., 1996. Cannabinoid receptor-mediated modulation of GABAergic transmission in the basal ganglia. In:The basal ganglia I: Advances in Behar.Biol., C. Ohye, M. Kimura, J.S. McKenzie eds., Plenum Press. Vol. 47, pp. 183–189.Google Scholar
  69. Manetd: Y.P., Crosanan, A.R. and Brotchie. J.J`-I.• 1996a, Modulation of GABAergic transmission in the globus pallidus by the synthetic cannabinoid WIN 55,212–2.Synapse22: 382–385.CrossRefGoogle Scholar
  70. Maneuf, Y.P.. Nash, J.E., Crossman, A.R., and Brotclùe. J.M., 1996b, Activation of the cannabinoid receptor by delta-9-tetrahydrocannabinol reduces GABA uptake in the globus pallidus. Eur.J. Phannacol.308: 161–164.CrossRefGoogle Scholar
  71. Maneuf Y.P. and Brotchie, J.M., 1997. Paradoxical action of the cannabinoid WIN 55. 212–2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices.Br. J. Pharmacol.120: 1397–1398.PubMedCrossRefGoogle Scholar
  72. Marsicano, G.. and Lutz, B.. 1999. Expression of the cannabinoid receptor CBI in distinct neuronal subpopulations in the adult mouse forebrain.Eur. J. Neurosci.11: 4213–4225.PubMedCrossRefGoogle Scholar
  73. Martin, B.R., Compton. D.R., Thomas, B.F., Preskott. W.R. and Little. P.J., 1991, Behavioral. biochemical and molecular modeling evaluation of cannabinoids analogs.Phannacol. Biochem. Behar40: 471–478.CrossRefGoogle Scholar
  74. Martin, B.R., 1986, Cellular effects of cannabinoids.Pharmacol. Rev.38: 45–74.PubMedGoogle Scholar
  75. Martin B.R., Mechoulam. R. and Razdan, R.K., 1999, Discovery and characterization of endogenous cannabinoids.Life Sci.65:573–595.Google Scholar
  76. Martyr, C.N., Lllís, L.S., and Thom. J., 1995, Nabilone in the treatment of multiple sclerosis.Lancet345: 579.CrossRefGoogle Scholar
  77. Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.J. and Bonner, T.I.. 1990. Structure of a cannabinoid receptor and fiatctional expression of the cloned cDNA.Nature346: 561–564.PubMedCrossRefGoogle Scholar
  78. Matsuda, L.A., Bonner. T.I. and Lolait, S.J., 1993, Localization of cannabinoid receptor mRN.A in rat brain.J. Comp. Neurol.327: 535–550.Google Scholar
  79. Mechoulan, R. and Hanus, L., 2000, A historical overview of chemical research on cannabinoids.Chem. Phys. Lipids108:1–13.CrossRefGoogle Scholar
  80. Meehoulam. R. and Fride. E., 2001, Physiology. A hunger for cannabinoids.Nature410: 763–765.CrossRefGoogle Scholar
  81. Melis, bl., Gessa, G.L. and Diana. M., 2000. Different mechanisms for dopaminergic excitation induced by opiates and catntabinoids.Prog..Veuro-psichophannacol. & Biol. Pst•chiat.24: 993–1006.CrossRefGoogle Scholar
  82. Melvin. L.S., Milne, G.M., Johnson, M.R., Subramaniam, B., Wilken, G.H., and Howlett, A.C., 1993, Structure-activity relationships for cannabinoids receptor-binding and analgesic activity: studies of bicyclic cannabinoid analogs_!Vol Phannacol. 44: 1008–1015.Google Scholar
  83. Mesehler, J.P., Howlett. A.C. and Madras, B.K., 2001, Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1.2,5,6-tetrahydropyridine (MPTP)-trealed nonhuman primates.Psychopharmacology156: 79–85.CrossRefGoogle Scholar
  84. Miller, A.S. and Walker. J.M.. 1995, Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulatesFur. J. Phannacol.279(2–3): 179–85.CrossRefGoogle Scholar
  85. Miller, A.S., and Walker, J.M., 1996, Electrophysiological effects of a cannabinoid on neuronal activity in the globus pallidus.Eur. J. Pharmacol.304: 29–35.PubMedCrossRefGoogle Scholar
  86. Miller, A.S., and Walker, J.M.. 1998, Localeffectsof cannabinoids on spontaneous and evoked inhibition in the globus pallidus.Eur. J. Pharmacol.352: 199–205.PubMedCrossRefGoogle Scholar
  87. Moldrich, G.. ad Wenger, T.. 2000. Localization of the CBI cannabinoid receptor in the rat brain. An immunohistochemical study.Peptides21: 1735–1742.PubMedCrossRefGoogle Scholar
  88. Morris K., 1997, The cannabis remedy-wonder worker or evilweed? Lancet350: 1828.CrossRefGoogle Scholar
  89. Itiltller-Vahl. K.R.. Kolbe. H., Schneider. U. and Enrich, L-LM.. 1999, Cannabis in movement disorder.Forsch. Komplementarmed.Suppl 3:23–7Google Scholar
  90. Mu J., Zhuang, S-Y., Kirby, M.T., Hampson, R.E. and Deadwyler. S.A., 1999, Cannabinoid receptors differentially modulate potassium A and D currents in hippos copal neurons in colture.J. Pharmacol. Exp. Ther.291: 893–902.PubMedGoogle Scholar
  91. Munro, S., Thomas, K.L. and Abu-Shaar, M.. 1993, Molecular characterization of a peripheral receptor for cannabinoids.Nature365: 61–65.PubMedCrossRefGoogle Scholar
  92. Navarro, M., Hernádez, E., Muñoz, R.M., Del Arco, I.. Villanúa, M.A.. Camera. M.R.A.. and Rodriguez de Fonseca, F., 1997, Acute administration of the CB1 cannabinoid receptor antagonist SR141716A induces anxiety-like responses in therat. NeuroReport8: 491–496.Google Scholar
  93. Netzeband, J.G., Conroy, S.M., Parsons, K.L. and Gruol, D.L., 1999. Cannabinoids enhance NMDA-elicited Ca signals in cerebellar granule neurons in colture.J.Neurosci.19: 8765–8777.PubMedGoogle Scholar
  94. Pacheco, M., Childers, S.R., Arnold, R., Casiano, F and Ward, S.I., 1991- Aminoalkylindoles: Actions on specific G-protein-linked receptors. JPhannacol. Exp. Ther.257: 170–183.Google Scholar
  95. Pacheco- M., Ward, S.J. and Childers, S.R.. 1993, Identification of cannabinoid receptors in cultured of rat cerebellar granule cells.Brain Res603: 102–110.PubMedCrossRefGoogle Scholar
  96. Pan, X.H.- Weda, S.R. and Lewis. D.L.. 1996, Rat brain cannabinoid receptor modulates N-type C2 channels in a neuronal expression system.1101.Phannacol_49: 707–714.Google Scholar
  97. Pasternak, G.W., 2001. Insights into mu opioid pharmacologythe role of mu opioid receptor subtypes.Life Sci.68: 2213–2219.PubMedCrossRefGoogle Scholar
  98. Pertwee, R.G., and Wickens, A.P., 1991. Enhancement by ehordiazepoxide of catalepsy induced in rats by intravenous or intrapallidal injections of enantionteric cannabiroids.Neuropharmacologj.30: 67–71.CrossRefGoogle Scholar
  99. Pertwee, R.G., Joe-Adigwe. G., and Hawksworth, G.M.. 1996. Further evidence for the presence of cannabinoid CBI receptor in mouse vas deferens.Eur. J. Phannacol.296: 169–172.Google Scholar
  100. Pertwee, R.G., 1997. Pharmacology of cannabinoid CBI and CB2 receptors.Phannacol. Ther.74: 129–180. Pertwee. R.G., 1999, Pharmacology of cannabinoid receptors ligands.Cur_,lied Chem.6: 635–664. Pertwee, R.G., 2001, Cannabinoid receptors and pain.Prog..Veurohnol.63(5): 569–611.CrossRefGoogle Scholar
  101. Petro, D.J.• and Ellenberger, C., Jr, 1981. Treatment of human spasticity with delta 9-tetrahydrocannabinol.J Clin. Pharmacol.21 (Supp1.8–9):413S–416S.PubMedGoogle Scholar
  102. Pistis, M., Porcu, G., Melis, M., Diana M. and Gesses G.L.. 2001, Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur..J..Veurosci.14: 1–7.Google Scholar
  103. Pope, H.G. Jr., and Ytugelun-Todd, I. 1996. The residual cognitive effects of heavy marijuana use in college students. J.A.A1_4. 275: 521–527.CrossRefGoogle Scholar
  104. Porter, A.C., and Felder. C.C.. 2001. ‘Elie endcantabiroid nervous system: tunique opportunities for therapeutic intervention.Phannacol_ &Therapeutics90:45–60.CrossRefGoogle Scholar
  105. Pulvirenti, L. and Diana. M., 2001. Ding dependence as a disorder of neural plasticity: focus on dopamine and glutamate.Neurosci. Rev.12: 41–59.Google Scholar
  106. Rice, W., Shannon, J.M., Burton, F.. and Fiedeldey, D.. 1997. Expression of brain-type cannabinoid receptor (CBI) in alveolar Type Il cells in the lung: regulation by hydrocortisone.Fur J Phannacol327: 227–232.CrossRefGoogle Scholar
  107. Richfield. E.K., and Berkelium M., 1994. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral gobus pallidus. Ann._Veurol.36(4): 577–584.CrossRefGoogle Scholar
  108. Rinaldi-Carmona, M., Barth. F. Héaulme, M.. Shire. I, landra. B. Congy, C. Martinez. S. Maruani, J. Néliat, G, Caput. D.. Ferrara, P.. Soubrié. P., Brehére. J.C. and Le Fur, G. L. 1994. SR141617A. a potent and selective antagonist of the brain cannabinoid receptor.PEBS Lett.350: 240–244.CrossRefGoogle Scholar
  109. Rinaldi-Carmona, M., Barth, F., Milian, J., Derocy, J.M., Casellas, P.. Congy. C., Oitric. D., Sanaa M.. Bouaboula, M., Calandra, B., Portier. M., Shire, D.. Breliere, J.C., and Le Fur, G. L., 1998, SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J.Phannacol Exp Ther284: 644–650.Google Scholar
  110. Robbe, D., Alonso. G., Duchamp. F., Bockaert. J.. and Manzoni O.J.. 2001. Localization and mechanisms of action of cannabinoids receptors at tie glutamatergic synapses of the mouse nucleus accunnbens.J. Neurosci.21(1): 109–116.PubMedGoogle Scholar
  111. Rodriguez de Fonseca, F., Del Arco, I., Martin-Calderon. J.I., Gorriti. M.A. and Navarro, M., 1998, Role of the endogenous cartnabimoid system in the regulation of motor activity.Neurohiol. Drs.5: 483–581.Google Scholar
  112. Romero, J., Garcia-Palomero, E.. Fernández Ruiz. J.J., and Rarixts, J. A., 1996. Involvement of CIABA6rreceptors in the motor inhibition produced by agonists of brain cannabinoid receptors.Behau. Pharmacol.7: 299–302.CrossRefGoogle Scholar
  113. Sañudo-Peña, M.C.. and Walker_ J.M.. 1997. Role of the s.tbthalanic nucleus in cannabinoid actions in the substantia nigra of the rat.J..Veurophysiol.77: 1635–1638.Google Scholar
  114. Sal-ludo-Pella. M.C., and Walker. J.M., 1998. Effects of intrapallidal cannabinoids on rotational behavior in rats: interaction with the dopaminergic systemSynapse28: 27–32.CrossRefGoogle Scholar
  115. Sañudo-Peña, M.C., Romero, J., Seale, G.E.. Fernandez-Ruiz. J.I. and Walker. J.M.. 2000. Activational role of cannabinoids on movement.Furl. Phannacol.391: 269–274.CrossRefGoogle Scholar
  116. Scheel-Kruger, J., Magelund, G.. and Oianas, M.C., 1981, Role of GABA in the striatal output system: Globus pallidus, nucleus entopedu ncularis, substantia nigra and nucleus subthalamicus. In: G.4B.4and the basal GangliaG. Di Chiara and G.I.. Gesses eds. Raven Press, New York pp.165–185.Google Scholar
  117. Scheel-Kruger, J.. 1986. Dopamine-GABA interactions: Evidence that GARA transmits. modulates and mediates dopaninergic functions in the basal ganglia and limbic system..-lita’eurol. Scand.73:8–49.Google Scholar
  118. Schweitzer. P., 2000, Cannabinoids decrease the K’ M-current in hippocampal CAI neurons.J.Neurosci.20: 51–58.PubMedGoogle Scholar
  119. Selley, D.E., Stark S., Sim, L.J.. and Childers, S.R., 1996. Cannabinoid receptor stimulation of guanosine5’-O-(3-[35SIthio)triphosphate binding in rat brain membranes.Life Sci.59: 659–668.PubMedCrossRefGoogle Scholar
  120. Sevcik, J and Masek K., 2000. Potential role of cannabinoids in Parkinson’s disease.Drugs Aging16: 3135.Google Scholar
  121. Shen, M., Piser, T.M., Seybold, V.S., and Thayer, SA, 1996, Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures.J. Neurosci.16: 4322–4334.PubMedGoogle Scholar
  122. Sheet M. and Thayer, S.A., 1998, The cannabinoid agonist WIN55,212–2 inhibits calcium channels by receptor-mediated and direct pathways in cultured rat hippocampal neurones.Brain Res.783: 77–84.CrossRefGoogle Scholar
  123. Shire. D.. Carillon C.. Kaghad, M., Calandra B.. Rinaldi-Cara ona, M., Le Fur. G., Caput. D. and Ferrara P., 1995, An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing..1. Biol. Chem.270: 3726–3731.CrossRefGoogle Scholar
  124. Sim, L.J.. Selley, D.E. and Childers, S.R., 1995, In vitro autoradiography of receptor-activated G-proteins in rat brain by agonist-stimulated guanylyl 5’-[y-35S)thio[-triphosphate bindingProc.Natl. Acad.Sci. USA92:7242–7246.CrossRefGoogle Scholar
  125. Sinnoneau. I.I., Hannza, M.S., Mata, H.P., Siegel, E.M., Vanderah, T.W., Porreca, F., Makriyannnis. A. and Malan. T.P. Jr.,2001, The cannabinoid agonist WIN55,212–2 suppresses opioid-induced emesis in ferrets.Anesthesiology94: 882–887.CrossRefGoogle Scholar
  126. Stella. N.. Schweitzer, P. and Pionelli, D., 1997, A second generation cannabinoid that modulates long-teen potentiation.Nature388: 773–778.PubMedCrossRefGoogle Scholar
  127. Szabo, B., Dörner, L., Pfreundtner, C., Nörenberg, W., and Starke, K., 1997, Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum.Neuroscience85 (2): 395–403.CrossRefGoogle Scholar
  128. Szabo. B., Wallmiehrath, I., Mathonia, P. and Pfreundtner. C., 2000, Cannabinoids inhibit excitatory neurotransmission in the substantia nigra pars reticulata.Neuroscience97: 89–97.PubMedCrossRefGoogle Scholar
  129. Takahashi. K.A., and Linden, D.J., 2000, Cannabinoid receptor modulation of synapses received by cerebellar purkinje cells.J. Neurphysiol83: 1167–1180.Google Scholar
  130. Tanda, G., Pontieri, F.E. and Di Chiara G.. 1997, Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mul opioid receptor mechanise.Science276: 2048–2050.PubMedCrossRefGoogle Scholar
  131. Terranova, J.-P., Storme, J.-J., Lafon, N., Perin, A, Rinaldi-Carmona, M., Le Fur, G., and Soubrié, P., 1996, Improvement of memory in rodents by the selective CBI cannabinoid receptor antagonist, SR141716A.Psychophannacology126: 165–172.CrossRefGoogle Scholar
  132. Tersigni. T.J. and Rosenberg, H.C., 1996, Local pressure application of cannabinoid agonists increases spontaneous activity of rat substantia nigra pars reticulata neurons without affecting response to iontophoretically-applied GABA.Brain Res.733: 184–192.PubMedCrossRefGoogle Scholar
  133. Traver. M.R., Carroll, D., Campbell, F.A, Reynolds, D.J., Moore, RA and McQuay, H.J., 2001, Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review.B.M.J.323: 16–21.CrossRefGoogle Scholar
  134. Tsou, K., Patrick, S.L., and Walker, J.M., 1995, Physical withdrawal in rats tolerant to A9tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist.Eur. J. Pharmacol.280: R13–R15.PubMedCrossRefGoogle Scholar
  135. TsoU, K., Brown, S.. Sanudo-Pena, M.C., Mackie, K., and Walker, J.M., 1998, Innnunohystochemical distribution of cannabinoid CB1 receptors in the rat central nervous system.Neuroscience83: 393–411.PubMedCrossRefGoogle Scholar
  136. Turner, C.E., 1984, Marijuana and Cannabis-Research. Why the conflict. In:Marijuana ‘84.Harvey D.J. ed. Oxford IRL Press, pp.31–36.Google Scholar
  137. Twitchell, W., Brown, S. and Mackie, K., 1997, Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons.J. Neurophysiol.78: 43–50.PubMedGoogle Scholar
  138. Walker, J.M., Huang S.M., Strangman, N.M., Tsou, K. and Sanudo-Pena, M.C., 1999, Pain modulation by release of the endogenous cannabinoid anandamide.Proc. Natl..4cad Sci.U54 96: 12198–12203.CrossRefGoogle Scholar
  139. Waszczak, B.L., Bergstrom, D.A., and Walters, J.R., 1981, Single-unit responses of substantia nigra and globus pallidus neurons to G.ABA agonist and antagonist drugs.Adiv.Biochem.Psychopharmacol.30: 79–94.Google Scholar
  140. Wheeler, D.B., Randall, A and Tsien, R.W., 1994, Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmissionScience264: 107–111.PubMedCrossRefGoogle Scholar
  141. Wu, K., and French E.D., 2000, Effects of chronic delta9-tetrahydroean nabinol on rat midbrain dopamine neurons: an electrophysiological assessment.Neuropharmacology39: 391–398.PubMedCrossRefGoogle Scholar
  142. Zimmer, Zimmer. M., Hohmann, G., Herkenham, and Bonner, I., 1999, Increased mortality,hypoactivity, and hypoalgesia in cannabinoid CBI receptor knockout mice.Proc. Nat. Acad. Sci. L1S496: 5780–5785.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Anna Lisa Muntoni
    • 1
  • Miriam Melis
    • 2
  • Marco Diana
    • 3
  1. 1.Inst. of Neurogenetics and Neuropharmacology C.N.R.CagliariItaly
  2. 2.“B.B. Brodie” Dept. of NeuroscienceUniv. of CagliariMorserratoItaly
  3. 3.Dept of Drug SciencesUniv. of SassariSassariItaly

Personalised recommendations