Survival of Tropical Apices Cooled to-196°C by Vitrification

Development of a potential cryogenic protocol of tropical plants by vitrification
  • Akira Sakai
  • Toshikazu Matsumoto
  • Dai Hirai
  • Rommanee Charoensub

Abstract

Tropical apical meristems excised from in vitro-grown plants which were sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2, 7.8 M) survived subsequent plunging into liquid nitrogen (LN) and regenerated plants (recovery growth 80%). Excised meristems of cassava (Manihot esculenta Grantz) were precultured with 0.3 M sucrose for 16 hr and then enhanced for tolerance to PVS2 with a mixture of 2 M glycerol and 0.4 M sucrose (LS) for 20 min at 25 °C. These osmoprotected apices were then sufficiently dehydrated with PVS2, so that the cytosolic concentration required for vitrification was attained upon rapid cooling into LN. Vitrification refers to a phase transition from a liquid into amorphous glass, while avoiding crystallization. In the vitrification protocol, enhancing tolerance to PVS2 and the mitigation of injurious effects during dehydration were crucial for ensuring the survivals.

The osmotic dehydration by PVS2 which is enable ceHs and tissues to survive at 196°C by vitrification is significantly advantaged over the freeze-induced dehydration in dehydrating cystosol more effectively, uniformly, speedy and less injuriously at non-freezing temperature, even in tropical plants .

Keywords

Sugar Permeability Crystallization Sucrose Glycerol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burke, M. J., 1986, The glassy state and survival of anhydrous biological systems, in: Membrane, Metabolism and Dry Organisms, A. C. Leopold, ed, Cornell Univ. Press, Ithaca, New York. pp. 358–364.Google Scholar
  2. Charoensub, R., Phansiri, S., Sakai, A.and Yongmanitchai, W., 1999, Cryopreservation of cassava in vitro-grown shoot tips cooled to -196 °C by vitrification, Cryo-Lett. 20: 89–94.Google Scholar
  3. Dereuddre, J., Fabre, J. and Basaglia, C.,1988, Resistance to freezing in liquid nitrogen of carnation (Dianthus caryophyllus L. var. Kolo) apical and axillary shoot tips excised from different aged in vitro plants, Plant Cell Rep. 7: 170–173.CrossRefGoogle Scholar
  4. Fabre, J. and Dereuddre, J., 1990, Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot tips, Cryo-Lett. 11: 413–426.Google Scholar
  5. Forsline, P. L, Towill, L. E., Wardell, W., Stuschnoff, C., Lamboy, W. F. and Ferson, J. R., 1998, Recovery and longevity of cryopreserved dormant apple buds, J. Amer. Soc. HortSci. 123: 365–370,Google Scholar
  6. Hellergren, J. and Li, P.H., 1981, Survival of Solanum tuberosum suspension cultures to -14°C: The mode of action of proline, Physiol. Plant. 52: 449–453.CrossRefGoogle Scholar
  7. Hirai, D., Shirai, K., Shirai, S. and Sakai, A., 1998, Cryopreservation of in vitro-grown meristems of strawberry (Fragaria x ananassa Duch.) by encapsulation-vitrification, Euphytica 101: 109–115.CrossRefGoogle Scholar
  8. Hirai, D. and Sakai, A., 1999a, Cryopreservation of in vitro-grown axially shoot tip meristems of mint (Mentha spicata L.) by encapsulation vitrification, Plant Cell Rep. 19: 150–155.CrossRefGoogle Scholar
  9. Hirai, D. and Sakai, A., 1999b, Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification, Potato Res. 42: 153–160.CrossRefGoogle Scholar
  10. Hirai, D. and Sakai, A., 2000, Cryopreservation of tropical crop cassava by encapsulation vitrification, Rep.Hokkaido Branch Jap. Soc. Breeding and Crop Sci. Soc. Jap. 41: 85–86.Google Scholar
  11. Hirai, D., 2001, Studies on cryopreservation of vegetatively propagated crops by encapsulation vitrification method, Rep. Hokkaido Pref. Agri. Exp. Sta. 99:1–58.Google Scholar
  12. Jitsuyama, Y., Suzuki, T., Harada, T. and Fujikawa, S., 1997, Ultrastructural study of mechanism of increased freezing tolerance to extracellular glucose in cabbage leaf cells, Cryo-Lett. 18: 33–44.Google Scholar
  13. Kobayashi, S. and Sakai, A., 1997, Cryopreservation of Citrus sinensis cultured cells, in: Conservation of Plant Genetic Resources in vitro. Vol.1: General Aspects, M. K. Razdan and E. C. Cocking, eds., Science Publishers, U.S.A., pp. 201–223.Google Scholar
  14. Kuranuki, Y. and Sakai, A., 1995, Cryopreservation of in vitro-grown shoot tips of tea (Camellia sinensis) by vitrification, Cryo-Lett. 16: 345–352.Google Scholar
  15. Kyesmu, P. M. and Takagi, H., 2000, Cryopreservation of shoot apices of yams (Dioscorea species) by vitrification, in: Cryopreservation of Tropical Plant Germplasm, F. Engelmann and H. Takagi, eds.,Tsukuba, JIRCAS, Japan, pp. 411–413.Google Scholar
  16. Langis, R., Schnabel, B., Earle, E. D. and Steponkus, P. L., 1989, Cryopreservation of Brassica campestris L. cell suspensions by vitrification, Cryo-Lett. 10: 421–428.Google Scholar
  17. Langis, R. and Steponkus, P. L., 1990, Cryopreservation of rye protoplasts by vitrification, Plant Physiol. 92:666–671.PubMedCrossRefGoogle Scholar
  18. Lambardi, M., Fabbri, A. and Caccavale, A., 2000, Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips, Plant Cell Rep. 19:213–218.CrossRefGoogle Scholar
  19. Lu, T. and Takagi, H., 2000, Cryopreservation of somatic embryos of papaya (Carica papaya L.) by vitrification. 2000 World Congress on In Vitro Biology, Program Issue, pp. 73.Google Scholar
  20. Matsumoto, T., Sakai, A. and Yamada, K., 1994, Cryopreservation of in vitro-grovm apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration, Plant Cell Rep. 13: 442–446.CrossRefGoogle Scholar
  21. Matsumoto, T., Sakai, A. and Yamada, K., 1995, Cryopreservation of in vitro-grown apical meristems of lily byvitrification, Plant Cell Tissue and Organ Cult. 41: 237–241.CrossRefGoogle Scholar
  22. Matsumoto, T., Sakai, A. and Nako, Y., 1998a, A novel preculturing for enhancing the survival of in vitro-grown meristems of wasabi (Wasabia japonica) cooled to -196 °C by vitrification, Cryo-Lett. 19:27–36.Google Scholar
  23. Matsumoto, T., Sakai, A. and Nako, Y., 1998b, Cryopreservation of in vitro cultured axillary shoot tips of grape (Vitis vinifera) by vitrification, Suppl. J. Japan. Soc. Hort. Sci. 67(1): 78.Google Scholar
  24. Matsumoto, T., Mochida, K., Hamura, H. and Sakai, A., 2001, Cryopreservation of persimmon (Diopyros kaki Thumb.) by vitrification of dormant shoot tips, Plant Cell Rep. 20: 398–402.CrossRefGoogle Scholar
  25. Matsumoto, T. and Sakai, A., 2001, Cryopreservation of in vitro-grown axillary shoot tips of grapevine (Vitis vinifera), Cryobiology 42 (6), in pressCrossRefGoogle Scholar
  26. Murashige, T. and Skoog, F., 1962, A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.CrossRefGoogle Scholar
  27. Niino, T., Sakai, A., Enomoto, S., Magoshi J. and Kato, S., 1992a, Cryopreservation of in vitro-grown shoot tips of mulberry by vitrification, Cryo-Lett. 13: 303–312.Google Scholar
  28. Niino, T., Sakai, A., Yakuwa, W. and Nojiri, K., 1992b, Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification, Plant Cell Tissue and Organ Culture 28: 261–266.CrossRefGoogle Scholar
  29. Niino, T., Hettiarachii, A. and Takahashi, I., 2000, Cryopreservation of lateral buds of in vitro-grown innala plants (Solenostemon rotundifolium) by vitrification, Cryo-Lett. 21: 349–356.Google Scholar
  30. Nishizawa, S., Sakai, A., Amano, Y. and Matsuzawa, T., 1993, Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by the vitrification method, Plant Sci. 88:67–73.CrossRefGoogle Scholar
  31. Niwata, E., 1995, Cryopreservation of apical meristems of garlic (Allium sativum L.) and high subsequent plant regeneration, Cryo-Lett. 16: 102–107.Google Scholar
  32. Pennycooke and Towill, L. E., 2000, Cryopreservation of shoot tips in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification, Plant Cell Rep. 19: 733–737.CrossRefGoogle Scholar
  33. Phunchindawan, M., Hirata, K., Sakai, A. and Miyamoto, K., 1997, Cryopreservation of encapsulated shoot primordia induced in horseradish (Armoracia rusticana) hairy root cultures, Plant Cell Rep. 16: 469–473.Google Scholar
  34. Rasmussen, D. H. and Luyet, B. J., 1970, Contribution to the establishment of the temperature-concentration curves of homogeneous nucleation in solutions of some cryoprotective agents, Biodinamica 11: 33–44.Google Scholar
  35. Reinhoud, P. J., 1996, Cryopreservation of tobacco suspension cells by vitrification, Doctoral thesis, Leiden Univ., Institute of Molecular Plant Sci., Leiden, pp. 1–95.Google Scholar
  36. Sakai, A., 1956, Survival of plant tissue at super-low temperature, Low Temp. Sci., Ser. B., 14: 17– 23.Google Scholar
  37. Sakai, A., 1960, Survival of the twig of woody plants at -196 °C, Nature, 185: 393–394.CrossRefGoogle Scholar
  38. Sakai, A., 1997, Potentially valuable cryogenic procedures for cryopreservation of cultured plant meristems, in:Conservation of Plant Genetic Resources In Vitro, M. K. Razdan and E. C. Cocking, eds., Science Publishers, U.S.A., pp. 53–66.Google Scholar
  39. Sakai, A. and Yoshida, S., 1967, Survival of plant tissue at super-low temperatures. VI. Effects of cooling and rewarming rates on survival, Plant Physiol. 42: 1695–1701.PubMedCrossRefGoogle Scholar
  40. Sakai, A. and Yoshida, S., 1968, The role of sugar and related compounds in variation of freezing tolerance, Cryobiol. 5: 160–174.CrossRefGoogle Scholar
  41. Sakai A. and Nishiyama, N., 1978, Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen, Hort Sci. 13: 225–227.Google Scholar
  42. Sakai, A., Kobayashi, S. and Oiyama, I., 1990, Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var.brasiliensis Tanaka) by vitrification, Plant Cell Rep. 9: 30–33.CrossRefGoogle Scholar
  43. Sugawara, T. and Sakai, A., 1978, Survival of suspension-cultured sycamore cells cooled to the temperature of liquid nitrogen, Plant Physiol. 54: 722–724.CrossRefGoogle Scholar
  44. Takagi, H., Thinh, N. T., Islam, O. M., Senboku, T. and Sakai, A., 1997, Cryopreservation of in vitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedures, Plant Cell Rep. 16: 594–599.CrossRefGoogle Scholar
  45. Tannoury, M., Ralambosoa, J., Kaminsky, M. and Dereuddre, J., 1991, Cryopreservation by vitrification of alginate-coated carnation (Dianthus cargo Phyllus L.) shoot tips of in vitro plantlets, C. R. Acad. Sci. Paris, t. 310, Serie III, pp. 633–638.Google Scholar
  46. Tao, D., Li, P. H. and Carter, J. V., 1983, Role of cell wall in freezing tolerance of cultured potato cells and their protoplasts, Physiol. Plant. 58: 527–532.CrossRefGoogle Scholar
  47. Thinh, N. T., 1997, Cryopreservation of germplasm of vegetatively propagated tropical monocots by vitrification, Doctoral thesis of Kobe Univ., Dep. of Agronomy, Japan, pp. 1–187.Google Scholar
  48. Thinh, N. T., Takagi, H. and Yashima, S., 1999, Cryopreservation of in vrtro-grown shoot tips of banana (Musa spp) by vitrification method, Cryo-Lett. 20: 163–174.Google Scholar
  49. Thinh, N. T. and Takagi, H., 2000, Cryopreservation of in vitro-grown apical meristems of terrestrial orchids (Cymbidium spp) by vitrification, in: Cryopreservation of Tropical Plant Germplasm, F. Engelmann and H. Takagi, eds., Tsukuba, JIRCAS, Japan, pp. 441–443.Google Scholar
  50. Thinh, N. T., Takagi, H. and Sakai, A., 2000, Cryopreservation of in vtfro-grown apical meristems of some vegetatively propagated tropical monocots by vitrification, in: Cryopreservation of Tropical Plant Germplasm, F. Engelmann and H. Takagi, eds., Tsukuba, JIRCAS, Japan, pp. 227–232.Google Scholar
  51. Touchell, D., 2000, Conservation of threatened flora by cryopreservation of shoot apices, in:Cryopreservation of Tropical Plant Germplasm, F. Engelmann and H. Takagi, eds., Tsukuba, JIRCAS, Japan, pp. 269–272.Google Scholar
  52. Tsukazaki, H., Mii, M., Kokuhara, K. and Ishikawa, K., 2000, Cryopreservation of Doritaenopsis culture by vitrification, Plant Cell Rep. 19:1160–1164.CrossRefGoogle Scholar
  53. Turner, S. R., Touchell, D. H., Dixson, K. and Tan, B., 2000, Cryopreservation of Anigozanthos viridis spp viridis and related taxa from the south west of Western Australia, Aust. J. Bot. 48: 739–744.CrossRefGoogle Scholar
  54. Turner, S. R., Senaratna, T., Bunn, E., Tunn, B., Dixon, K. W. and Touchell, D. H., 2001, Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol, Ann. Bot. 87:739–744.CrossRefGoogle Scholar
  55. Vandenbussche, B., Weyens, G. and De Proft, M., 2000, Cryopreservation of in vitro sugar beet (Beta vulgaris.L) shoot tips by a vitrification technique, Plant Cell Rep. 19:1064–1068.CrossRefGoogle Scholar
  56. Wang, J. H., Ge, J. G., Liu, F., Bian, H. W. and Huang, C. N., 1998, Cryopreservation of seeds and protocorms of Dendrobium candidum, Cryo-Lett. 19: 123–128.Google Scholar
  57. Withers, L. A., 1979, Freeze preservation of somatic embryos and clonal plantlets of carrot (Daucus carota). Plant Physiol. 63: 460–467.PubMedCrossRefGoogle Scholar
  58. Yamada, T., Sakai, A., Matsumura, T. and Higuchi, S., 1991, Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification, Plant Sci. 78: 81–87.CrossRefGoogle Scholar
  59. Yoshimatsu, K., Touno, K. and Shimomura, K., 2000, Cryopreservation of medicinal plant resources: retention of biosynthetic capabilities in transformed cultures, in: Cryopreservation of Tropical Plant Germplasm, F. Engelmann and H. Takagi, eds., Tsukuba, JIRCAS, Japan, pp. 77–88.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Akira Sakai
    • 1
  • Toshikazu Matsumoto
    • 2
  • Dai Hirai
    • 3
  • Rommanee Charoensub
    • 4
  1. 1.Hokkaido Univ.SapporoJapan
  2. 2.Shimane Agr. Exp. St.Izumo, ShimaneJapan
  3. 3.Hokkaido Central Pref. Agr. Exp. St.NaganumaJapan
  4. 4.Scientific Equipment CenterKasetart Univ.BangkokThailand

Personalised recommendations