Advertisement

Structural Differentiation of Spermatozoa During Post-Testicular Maturation

  • Gary E. Olson
  • Subir K. NagDas
  • Virginia P. Winfrey

Abstract

The male gamete exits from the testis as a highly polarized but functionally immature spermatozoon that requires further differentiation in the epididymis to become progressively motile and to acquire fertilizing capacity. This crucial developmental process requires sperm interaction with a progressively changing luminal environment regulated by region-specific secretory and absorptive activities of the epididymal epithelium (Hinton and Palladino, 1995; Hinton et al., 1996). Early studies demonstrated striking differences in the electrophoretic mobility of whole caput and cauda epididymal spermatozoa (Bedford, 1963), suggesting that a maturation-dependent increase in anionic residues on the sperm surface resulted from this interaction. This idea was confirmed ultrastructurally by cytochemical studies demonstrating altered binding of charged colloidal iron particles and lectins to specific surface domains of the spermatozoon as they transit the epididymis (Yanagimachi et al., 1972; Nicolson et al., 1977). Now it is recognized that an extensive biochemical remodeling of the protein, glycoprotein and lipid composition of the sperm plasma membrane is an important component of post-testicular sperm maturation (Bartles, 1995; Jones 1998; Ladha, 1998).

Keywords

Acrosome Reaction Epididymal Spermatozoon Sperm Maturation Fibrous Sheath Sperm Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. A., and Green, D. P. L., 1997, The mammalian acrosome reaction: gateway to sperm fusion with the oocyte?, BioEssays19:241.PubMedCrossRefGoogle Scholar
  2. Anakwe, O. O., Sharma, S., Hoff, H. B., Hardy, D. M., and Gerton, G. L., 1991, Maturation of guinea pig sperm in the epididymis involves the modification of proacrosin oligosaccharide side chains, Mol Reprod Dev29:294.PubMedCrossRefGoogle Scholar
  3. Anberg, A., 1957, The ultrastructure of the human spermatozoon, Acta Obstet Gynecol Scand36, suppl.2.Google Scholar
  4. Andre, J., 1962, Contribution a la connaissance du cohondriome. Etude de ses modifications ultrastructurales pendant la spermatogenese, J Ultrastruct ResSuppl 3:1.Google Scholar
  5. Barros, C., Bedford, J. M., Franklin, L. E., and Austin, C. R., 1967, Membrane vesiculation as a feature of the mammalian acrosome reaction, J Cell Biol34:C1.PubMedCrossRefGoogle Scholar
  6. Bartles, J. R., 1995, The spermatid plasma membrane comes of age, Trends Cell Biol5:400.PubMedCrossRefGoogle Scholar
  7. Bearer, E. L., and Friend, D. S., 1990, Morphology of mammalian sperm membranes during differentiation, maturation, and capacitation, J Electron Micros Tech16:281.CrossRefGoogle Scholar
  8. Bedford, J. M., 1963, Changes in the electrophoretic properties of rabbit spermatozoa during passage through the epididymis, Nature200:1178.PubMedCrossRefGoogle Scholar
  9. Bedford, J. M., 1965, Changes in fine structure of the rabbit sperm head during passage through the epididymis, JAnat99:891.Google Scholar
  10. Bedford, J. M., 1975, Maturation, transport, and fate of spermatozoa in the epididymis, Handbook of Physiology: Endocrinology, Male Reproductive SystemR. O. Greep and E. B. Astwood ed., Waverly Press, Washington, D.C.Google Scholar
  11. Bedford, J. M., 1998, Mammalian fertilization misread? Sperm penetration of the eutherian zona pellucida is unlikely to be a lytic event, Biol Reprod59:1275.PubMedCrossRefGoogle Scholar
  12. Bedford, J. M., and Calvin, H. I., 1974a, Changes in -S-S- linked structures of the sperm tail during epididymal maturation, with comparative observations in sub-mammalian species, J Exp Zool187:181.PubMedCrossRefGoogle Scholar
  13. Bedford, J. M., and Calvin, H. I., 1974b, The occurrence and possible functional significance of -S-S-crosslinks in sperm heads, with particular reference to Eutherial mammals, J Exp Zool188:137.PubMedCrossRefGoogle Scholar
  14. Bedford, J. M., and Millar, R. P., 1978, The character of sperm maturation in the epididymis of the ascrotal hyrax, Procavia capensis and armadillo, Dasypus novemcinctus, Biol Reprod19:396.CrossRefGoogle Scholar
  15. Bedford, J. M., and Nicander, L., 1971, Ultrastructural changes in the acrosome and sperm membranes during maturation of spermatozoa in the testis and epididymis of the rabbit and monkey, J Anat108:527.PubMedGoogle Scholar
  16. Bellve, A. R., Chandrika, R., and Barth, A., 1990, Temporal expression, polar distribution and transition of an epitope domain in the perinuclear theca during mouse spermatogenesis, J Cell Sci96:745.PubMedGoogle Scholar
  17. Bellve, A. R., Chandrika, R., Yordanka, S., Martinova, S., and Barth, A. H., 1992, The perinuclear matrix as a structural element of the mouse sperm nucleus, Biol Reprod47:451.PubMedCrossRefGoogle Scholar
  18. Blaquier, J. A., Cameo, M. S., and Burgos, M. H., 1972, The role of androgens in the maturation of epididymal spermatozoa in the guinea pig, Endocrinology90:839.PubMedCrossRefGoogle Scholar
  19. Bloom, G., and Nicander, L., 1961, On the ultrastructurae and development of the protoplasmic droplet of spsermatozoa, Z Zellforsck55:833.CrossRefGoogle Scholar
  20. Bookbinder, L. H., Cheng, A., and Bleil, J. D., 1995, Tissue- and species -specific expression of sp56, a mouse sperm fertilization protein, Science269:86.PubMedCrossRefGoogle Scholar
  21. Burgos, M. H., Cavicchia, J. C., de Rosas, J. C., and Gutierrez, L. S., 1986, Freeze fracture of sperm membranes during epididymal maturation. Proc. Xth Int. Cong. on Electron Microscopy, Kyoto3:1881.Google Scholar
  22. Calvin, H. I., and Bedford, J. M., 1971, Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis, J Reprod FertSuppl. 13:65.Google Scholar
  23. Calvin, H. I., and Cooper, G. W., 1979, A specific selenopolypeptide associated with the outer membrane of rat sperm mitochondria, The SpermatozoonD. W. Fawcett and J. M. Bedford ed., Urban and Schwarzenberg, Baltimore-Munich.Google Scholar
  24. Calvin, H. I., Cooper, G. W., and Wallace, E., 1981, Evidence that selenium in rat sperm is associated with a cysteine-rich structural protein of the mitochondrial capsules, Gamete Res4:139.CrossRefGoogle Scholar
  25. Cataldo, L., Baig, K., Oko, R., Mastrangelo, M.-A., and Kleene, K. C., 1996, Developmental expression, intracellular localization, and selenium content of the cysteinge-rich protein associated with the mitochondrial capsules of mouse sperm, Mol Reprod Dev45:320.PubMedCrossRefGoogle Scholar
  26. Coonrod, S. A., Herr, J. C., and Westhusin, M. E., 1996, Inhibition of bovine fertilization in vitro by antibodies to SP-10, J Reprod Fert107:287.CrossRefGoogle Scholar
  27. Cooper, N. J., Holland, M. K., and Breed, W. G., 1998, Extratesticular sperm maturation in the brush-tail possum, Trichosurus vulpecula, J Reprod Fert,Suppl. 53:221.Google Scholar
  28. Courtens, J. L., Courot, M., and Flechon, J. E., 1976The perinuclear substance of boar, bull, ram and rabbit spermatozoa, J Ultrastruct Res57:54.PubMedCrossRefGoogle Scholar
  29. DiCarlantonio, G., and Talbot, P., 1988, Evidence for sequential deployment of secretory enzymes during the normal acrosome reaction of guinea pig sperm in vitro, Gamete Res21:425.PubMedCrossRefGoogle Scholar
  30. Eddy, E. M., and O’Brien, D. A., 1993, The Spermatozoon, The physiology of reproductionE. Knobil and J. D. Neill ed., Raven Press, New York.Google Scholar
  31. Escalier, D., 2000, Failure of differentiation of the nuclear-perinuclear skeletal complex in the round-heded human spermatozoa, Int J Dev Biol34:287.Google Scholar
  32. Fawcett, D. W., 1975, The mammalian spermatozoon, Dev Biol44:394.PubMedCrossRefGoogle Scholar
  33. Fawcett, D. W., and Hollenberg, R. D., 1963, Changes in the acrosome of guinea pig spermatozoa during passage through the epididymis, Z Zellforsch60:276.PubMedCrossRefGoogle Scholar
  34. Fawcett, D. W., and Phillips, D. M., 2000, Observations on the release of spermatozoa and on changes in the head during passage through the epididymis, J Reprod Fert ,Suppl6:405.Google Scholar
  35. Fornes, M. W., and Burgos, M. H., 1994, Epididymal glycoprotein involved in rat sperm association, Mol Reprod Dev38:43.PubMedCrossRefGoogle Scholar
  36. Fornes, M. W., and deRosas, J. C., 1991, Interactions between rat epididymal epithelium and spermatozoa, Anat Rec231:193.PubMedCrossRefGoogle Scholar
  37. Foster, J. A., Friday, B. B., Maulit, M. T., Blobel, C., Winfrey, V. P., Olson, G. E., Kim, K.-S., and Gerton, G. L., 1997, AM67, a secretory component of the guinea pig sperm acrosomal matrix, is related to mouse sperm protein sp56 and the complement component 4-binding proteins, J Biol Chem272:12714.PubMedCrossRefGoogle Scholar
  38. Foster, J. A., Klotz, K. L., Flickinger, C. J., Thomas, T. S., Wright, R. M., Castillo, J. R., and Herr, J. C., 1994, Human SP-10: Acrosomal distribution, processing, and fate after the acrosome reaction, Biol Reprod51:1222.PubMedCrossRefGoogle Scholar
  39. Friend, D. S., and Heuser, J. E., 1981, Orderly particle arrays on the mitochondrial outer membrane in rapidly-frozen sperm, Anat Rec199:159.PubMedCrossRefGoogle Scholar
  40. Garbers, D. L., Wakabayashi, T., and Reed, P. W., 1970, Enzyme profile of the cytoplasmic droplet from bovine epididymal spermatozoa, Biol Reprod3:327.PubMedGoogle Scholar
  41. Green, D. P. L., 1978, The activation of proteolysis in the acrosome reaction of guinea-pig sperm, J Cell Sci32:153.PubMedGoogle Scholar
  42. Harding, H. R., Carrick, F. N., and Shorey, C. D., 1975, Ultrastructural changes in spermatozoa of the brush-tailed possum, Trichosurus vulpecula (Marsupialia), during epididymal transit. Part 1: the flagellum, Cell Tiss Res164:121.Google Scholar
  43. Hardy, D. M., Oda, M. N., Friend, D. S., and Huang, T. T. F., 1991, A mechanism for differential release of acrosomal enzymes during the acrosome reaction, Biochem J275:759.PubMedGoogle Scholar
  44. Harris, M. S., and Rodger, J. C., 1998, Characterisation of fibrous sheath and midpiece fibre network polypeptides of marsupial spermatozoa with a monoclonal antibody, Mol Reprod Dev50:461.PubMedCrossRefGoogle Scholar
  45. Herr, J. C., Klotz, K., Shannon, J., Wright, R. M., and Flickinger, C. J., 1992, Purification and microsequencing of the intra-acrosomal protein SP-10. Evidence that SP-10 heterogeneity results from endoproteolytic processes, Biol Reprod47:11.PubMedCrossRefGoogle Scholar
  46. Herr, J. C., Thomas, D., Bush, L. A., Coonrod, S., Khole, V., Howards, S. S., and Flickinger, C. J., 1999, Sperm mitochondria-associated cysteine-rich protein (SMCP) is an authantigen in Lewis rats, Biol Reprod61:428.PubMedCrossRefGoogle Scholar
  47. Herrada, G., and Wolgemuth, D. J., 1997, The mouse transcritpion factor Stat4 is expressed in haploid male germ cells and is present in the perinuclear theca of spermatozoa, J Cell Sci110:1543.PubMedGoogle Scholar
  48. Hess, H., Heid, H., and Franke, W. W., 1993, Molecular characterization of mammalian cylicin, a basic protein of the sperm head cytoskeleton, J Cell Biol122:1043.PubMedCrossRefGoogle Scholar
  49. Hess, H., Heid, H., Zimbelmann, R., and Franke, W. W., 1995, The protein complexity of the cytoskeleton of bovine and human sperm heads: The identification and characterization of cylicin II, Exp Cell Res218:174.PubMedCrossRefGoogle Scholar
  50. Hinton, B. T., and Palladino, M. A., 1995, Epididymal epithelium: Its contribution to the formation of a luminal fluid microenvironment, Microsc Res Tech30:67.PubMedCrossRefGoogle Scholar
  51. Hinton, B. T., Palladino, M. A., Rudolph, D., Lan, Z. J., and Labus, J. C., 1996, The role of the epididymis in the protection of spermatozoa, Curr Topics Dev Biol33:61.CrossRefGoogle Scholar
  52. Hoffer, A. P., Shalev, M., and Frisch, D. H., 1981, Ultrastructure and maturational changes in spermatozoa in th epididymis of the pigtailed monkey, Macaca nemestrina, J Androl3:146.Google Scholar
  53. Holt, W. V., 1979, Development and maturation of the mammalian acrosome. A cytochemical study using phosphotungstic acid staining, J Ultrastruct Res68:58.PubMedCrossRefGoogle Scholar
  54. Holt, W. V., 1984, Membrane heterogeneity in the mammalian spermatozoon, Int Rev Cytol87:159.PubMedCrossRefGoogle Scholar
  55. Huang, T. T. F., and Yanagimachi, R., 1985, Inner acrosomal membrane of mammalian spermatozoa: its properties and possible functions in fertilization, Am J Anat174:249.PubMedCrossRefGoogle Scholar
  56. Jones, R., 1998, Plasma membrane structure and remodelling during sperm maturation in the epididymis, J Reprod Fert ,Suppl53:73.Google Scholar
  57. Jones, R., and Brown, C. R., 1987, Identification of a zona-binding protein from boar spermatozoa as proacrosin, Exp Cell Res171:503.PubMedCrossRefGoogle Scholar
  58. Jones, R. C., 1971, Studies of the structure of the head of boar spermatozoa from the epididymis, J Reprod Fert.Suppl13:51.Google Scholar
  59. Juarez-Mosqueda, M. L., and Mujica, A., 1999, A perinuclear theca substructure is formed during epididymal guinea pig sperm maturation and disappears in acrosome reacted cells, J Struct Biol128:225.CrossRefGoogle Scholar
  60. Kimura, Y., Yanagimachi, R., Kuretake, S., Bortkiewicz, H., Perry, A. C. F., and Yanagimachi, H., 1998, Analysis of mouse oocyte activation suggests the involvement of sperm perinuclear material, Biol Reprod58:1407.PubMedCrossRefGoogle Scholar
  61. Kirchhoff, C., 1998, Molecular characterization of epididymal proteins, Rev Reprod3:86.PubMedCrossRefGoogle Scholar
  62. Korley, R., Pouresmaeili, F., and Oko, R., 1997, Analysis of the protein composition of the mouse sperm perinuclear theca and characterization of its major protein constituent, Biol Reprod57:1426.PubMedCrossRefGoogle Scholar
  63. Kumar, R. A., and Phillips, D. M., 1991, Spermiation and sperm maturation in the marmoset, Anat Rec229:315.PubMedCrossRefGoogle Scholar
  64. Ladha, S., 1998, Lipid heterogeneity and membrane fluidity in a highly polarized cell, the mammalian spermatozoon, J Membrane Biol165:1.CrossRefGoogle Scholar
  65. Lalli, M., and Clermont, Y., 1981, Structural changes of the head componenets of the rat spermatid during late spermiogenesis, Am J Anat160:419.PubMedCrossRefGoogle Scholar
  66. Lieberman, S. J., Wasco, W., Macleod, J. , Satiur, P., and Orr, G. A., 1988, Immunogold localization of the regulatory subunit of a type II cAMP-dependent protein kinase tightly associated with mammalian sperm flagella, J Cell Biol107:1809.PubMedCrossRefGoogle Scholar
  67. Lin, R.-Y., Moss, S. B., and Rubin, C. S., 1995, Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells, J Biol Chem270:27804.PubMedCrossRefGoogle Scholar
  68. Longo, F. J., Krohne, G., and Franke, W. W., 1987, Basic proteins of the perinuclear theca of mammalian spermatozoa and spermatids: a novel class of cytoskeletal elements, J Cell Biol105:1105.PubMedCrossRefGoogle Scholar
  69. Moore, H. D. M., and Bedford, J. M., 1978, Ultrastructure of the equatorial segment of hamster spermatozoa during penetration of oocytes, J Ultrastruct Res62:110.PubMedCrossRefGoogle Scholar
  70. NagDas, S. K., Winfrey, V. P., and Olson, G. E., 1996a, Hydrolase binding activities of the acrosomal matrix of hamster spermatozoa, Biol Reprod55:1405.PubMedCrossRefGoogle Scholar
  71. NagDas, S. K., Winfrey, V. P., and Olson, G. E., 1996b, Proacrosin-acrosomal matrix binding interactions in ejaculated bovine spermatozoa, Biol Reprod54:111.PubMedCrossRefGoogle Scholar
  72. Nicolson, G. L., Usui, N., Yanagimachi, R., Yanagimachi, H., and Smith, J. R., 1977, Lectin-binding sites on the plasma membranes of rabbit spermatozoa. Changes in surface receptors during epididymal maturation and after ejaculation., J Cell Biol74:950.PubMedCrossRefGoogle Scholar
  73. Oko, R., and Clermont, Y., 1988, Isolation, structure and protein composition of the perforatorium of rat spermatozoa, Biol Reprod39:673.PubMedCrossRefGoogle Scholar
  74. Oko, R., Hermo, L., Chan, P. T. K., Fazel, A., and Bergeron, J. J. M. 1993, The cytoplasmic droplet of rat epididymal spermatozoa contains saccular elements with Golgi characteristics, J Cell Biol123:809.PubMedCrossRefGoogle Scholar
  75. Oko, R., and Morales, C. R., 1994, A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca, Dev Biol166:2355.CrossRefGoogle Scholar
  76. Olson, G. E., 1980, Changes in intramembranous particle distribution in the plasma membrane of Didelphis virginiana spermatozoa during maturation in the epididymis, Anat Rec197:471.PubMedCrossRefGoogle Scholar
  77. Olson, G. E., Hamilton, D. W., and Fawcett, D. W., 1976, Isolation and characterization of the perforatorium of rat spermatozoa, J Reprod Fert47:293.CrossRefGoogle Scholar
  78. Olson, G. E., Noland, T. D., Winfrey, V. P., and Garbers, D. L., 1983, Substructure of the postacrosomal sheath of bovine spermatozoa, J Ultrastruct Res85:204.PubMedCrossRefGoogle Scholar
  79. Olson, G. E., Winfrey, V. P., and NagDas, S. K., 1997, Temporal expression and localization of protein farnesyltransferase during spermiogenesis and posttesticular sprm maturation in the hamster, Mol Reprod Dev48:71.PubMedCrossRefGoogle Scholar
  80. Olson, G. E., Winfrey, V. P., and NagDas, S. K., 1998, Acrosome biogenesis in the hamster: Ultrastructurally distinct matrix regions are assembled from a common precursor polypeptide, Biol Reprod58:361.PubMedCrossRefGoogle Scholar
  81. Otani, H., Tanaka, O., Kasai, K.-L., and Yoshioka, T., 1988, Development of mitochondrial helical sheath in the middle piece of the mouse spermatid tail: Regular dispositions and synchronized changes, Anat Rec222:26.PubMedCrossRefGoogle Scholar
  82. Pallini, V., Baccetti, B., and Burrini, A. G., 1979, A peculiar cysteine-rich polypeptide related to some unusual properties of mammalian sperm mitochondria, The SpermatozoonD. W. Fawcett and J. M. Bedford ed., Urban and Schwarzenberg, Baltimore-Munich.Google Scholar
  83. Paranko, J., Longo, F., Potts, J., Krohne, G., and Franke, W. W., 1988, Widespread occurrence of calicin, a basic cytoskeletal protein of sperm cells, in diverse mammalian species, Differentiation38:21.PubMedCrossRefGoogle Scholar
  84. Pellettier, R.-M., and Friend, D. S., 1983, Development of membrane differentiations in the guinea pig spermatid during spermiogenesis, Am J Anat167:119.CrossRefGoogle Scholar
  85. Perry, A. C. F., Wakayama, T., and Yanagimachi, R., 1999, A novel trans-complementation assay suggests full mammalian oocyte activation is coordinately initiated by multiple, submembrane sperm components, Biol Reprod60:747.PubMedCrossRefGoogle Scholar
  86. Phillips, D. M., and Bedford, J. M., 1987, Sperm-sperm associations in the Loris epididymis, Gamete Res18:17.PubMedCrossRefGoogle Scholar
  87. Ramos, A. S., and Dym, M., 1977, Fine structure of the monkey epididymis, Am J Anat149:501.PubMedCrossRefGoogle Scholar
  88. Reinton, N., Collas, P., Haugen, T. B., Skalhegg, B. S., Hansson, V., Jahnsen, T., and Tasken, K., 2000, Localization of a novel human A-kinase-anchoring protein, hAKAP220, during spermatogenesis, Dev Biol223:194.PubMedCrossRefGoogle Scholar
  89. Russell, L., Peterson, R. N., and Freund, M., 1980, On the presence of bridges linking the inner and outer acrosomal membranes of boar spermatozoa, Anat Rec198:449.PubMedCrossRefGoogle Scholar
  90. Saxena, D. K., Tanii, I., Yoshinaga, K., and Toshimori, K., 1999, Role of intra-acrosomal antigenic molecules acrin 1 (MN7) and acrin 4 (MC41) in penetration of the zona pellucida in fertilization in mice, J Reprod Fert117:17.CrossRefGoogle Scholar
  91. Sutovsky, P., Oko, R., Hewitson, L., and Schatten, G., 1997, The removal of the sperm perinuclear theca and its association with the bovine oocyte surface during fertilization, Dev Biol188:75.PubMedCrossRefGoogle Scholar
  92. Suzuki, F., 1981, Changes in intramembranous particle distribution in epididymal spermatozoa of the boar, Anat Rec199:361.PubMedCrossRefGoogle Scholar
  93. Suzuki, F., and Nagano, T., 1980, Epididymal maturation of rat spermatozoa studied by thin sectioning and freeze-fracture, Biol Reprod22:1219.PubMedGoogle Scholar
  94. Suzuki, F. and Yanagimachi, R., 1986, Membrane changes in Chinese hamster spermatozoa during epididymal maturation, J Ultrastruct Mol Struct Res96:91.PubMedCrossRefGoogle Scholar
  95. Talbot, P., and DiCarlantonio, G., 1985, Cytochemical localization of dipeptidyl peptidase II (DPP-II) in mature guinea pig sperm, J Histochem Cytochem33:1169.PubMedCrossRefGoogle Scholar
  96. Temple-Smith, P. D., 1994, Comparative structure and function of marsupial spermatozoa, Reprod Fertil Dev2:421 (1994).CrossRefGoogle Scholar
  97. Temple-Smith, P. D., and Bedford, J. M., 1976, The features of sperm maturation in the epididymis of a marsupial, the brushtailed possum Trichosurus vulpecula, Am J Anat147:471.PubMedCrossRefGoogle Scholar
  98. Temple-Smith, P. D., and Bedford, J. M., 1980, Sperm maturation and the formation of sperm pairs in the epididymis of the opossum, Didelphis virginiana, J Exp Zool214:161.PubMedCrossRefGoogle Scholar
  99. Toyama, Y., and Nagano, T., 1988, Maturation changes of the plasma membrane of rat spermatozoa observed by surface replica, rapid-freeze and deep-etch, and freeze-fracture methods, Anat Rec220:43.PubMedCrossRefGoogle Scholar
  100. Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., and Flohe, L., 1999, Dual function of the selenoprotein PHGPx during sperm maturation, Science277:225.Google Scholar
  101. Voglmayr, J. K., 1975, Metabolic changes in spermatozoa during epididymal transis, Handbook of Physiology: Endocrinology, Male Reproductive SystemR. O. Greep and E. B. Astwood ed., Waverly Press, Washington, D.C.Google Scholar
  102. von Bulow, M., Rackwits, H.-R., Zimbelmann, R., and Franke, W. W., 1997, CP β3, a novel isoform of an actin-binding protein, is a component of the cytoskeletal calyz of the mammalian sperm head, Exp Cell Res233:216.CrossRefGoogle Scholar
  103. Wassarman, P. M., 1999, Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion, Cell96:175.PubMedCrossRefGoogle Scholar
  104. Westbrook-Case, V. A., Winfrey, V. P., and Olson, G. E., 1994, A domain-specific 50-kildalton structural protein of the acrosomal matrix is processed and released during the acrosome reaction in guinea pig, Biol Reprod51:1.PubMedCrossRefGoogle Scholar
  105. Westbrook-Case, V. A., Winfrey, V. P., and Olson, G. E., 1995, Sorting of the domain-specific acrosomal matrix protein AM50 during spermiogenesis in the guinea pig, Dev Biol167:338.PubMedCrossRefGoogle Scholar
  106. Woolley, D. M., 1970, The midpiece of the mouse spermatozoon: its form and development as seen by surface replication, J Cell Sci6:865.PubMedGoogle Scholar
  107. Yanagimachi, R., Kamiguchi, Y., Suzuki, F., and Yanagimachi, H., 1985, Maturation of spermatozoa in the epididymis of the Chinese hamster, Am J Anat172:317.PubMedCrossRefGoogle Scholar
  108. Yanagimachi, R., Noda, Y. D., Fujimoto, M., and Nicolson, G. L., 1972, The distribution of negative surface charges on mammalian spermatozoa, Am J Anat135:497.PubMedCrossRefGoogle Scholar
  109. Yanagimachi, R., and Phillips, D. M., 1984, The status of acrosomal caps immediately before fertilization in vivo, Gamete Res9:1.CrossRefGoogle Scholar
  110. Yoshinaga, K., Tanii, I., and Toshimori, K., 1998 Immunocytochemical alteration in the intra-acrosomal antigen MN7 during epididymal maturation of guinea pig spermatozoa, Cell Tiss Res292:427.CrossRefGoogle Scholar
  111. Zhang, F. L., and Casey, P. J., 1996, Protein prenylation: molecular mechanisms and functional consequences, Ann Rev Biochem65:241.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Gary E. Olson
    • 1
  • Subir K. NagDas
    • 1
  • Virginia P. Winfrey
    • 1
  1. 1.Department of Cell BiologyVanderbilt UniversityNashvilleUSA

Personalised recommendations