Ethylene pp 241-288 | Cite as

Ethylene in Pathogenesis

  • Muhammad Arshad
  • William T. FrankenbergerJr.


Stress C2H4 represents collectively the accelerated C2H4 production in plants induced by various abiotic (wounding, physical load, chilling temperatures, waterlogging, and exposure to chemicals) and biotic (disease and insect damage) factors. Plant C2H4 synthesis is often significantly increased during infection by pathogens and can also be induced by treatment with pathogen-derived elicitors (Boiler, 1991; Pegg, 1976b; Frankenberger and Arshad, 1995). It has been proposed that C2H4 acts as a messenger during plant-microbe interactions. This accelerated stress C2H4 during pathogenesis may be a stimulus for defense responses that lead to resistance or conversely, it may play a role in disease symptom development and in the weakening of endogenous resistance (Ben-David et al., 1986; Boiler, 1991; Pegg, 1976b; Stall and Hall, 1984; Yang and Hoffman, 1984; Abeles et al., 1992; Lund et al., 1998). By using various mutants of soybean altered in C2H4 sensitivity and a number of pathogens (virulent and avirulent), Hoffman et al. (1999) concluded that the reduced C2H4 sensitivity could be beneficial against some pathogens but deletrious to resistance against other pathogens. This chapter deals mainly with infection-induced C2H4 production and its possible role in disease or resistance development in the infected hosts. Excellent reviews related to this subject are published elsewhere (Abeles et al., 1992; Boiler, 1982, 1991, 1990; Hislop et al., 1973b; Archer and Hislop, 1975; Pegg, 1976b; Frankenberger and Arshad, 1995).


Ethylene Production Fusarium Oxysporum C2H4 Production Ethylene Biosynthesis Plant Pathol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., and Forrence, L. E., 1970, Temporal and hormonal control of β-l,3-glucanase in Phaseolus vulgaris L., Plant Physiol. 45:395-400.PubMedCrossRefGoogle Scholar
  2. Abeles, F. B., Morgan, P. W., and Saltveit, M. E. Jr., 1992, Ethylene in Plant Biology, Academic Press, San Diego, CA, pp.414.Google Scholar
  3. Abeles, F. B., Bosshart, R. P., Forrence, L. E., and Habig, W. H., 1971, Preparation and purification of glucanase and chitinase from bean leaves, Plant Physiol. 47:129-134.PubMedCrossRefGoogle Scholar
  4. Achilea, O., Chalutz, E., Fuchs, Y., and Rot, I., 1985a, Ethylene biosynthesis and related physiological changes in Penicillium digitatum-infected grapefruit (Citrus paradisi), Physiol Plant Pathol. 26:125-134.CrossRefGoogle Scholar
  5. Achilea, O., Fuchs, Y., Chalutz, E., and Rot, I., 1985b, The contribution of host and pathogen to ethylene biosynthesis in Penicillium digitatum-infected citrus fruit, Physiol. Plant Pathol. 27:55-63.CrossRefGoogle Scholar
  6. Aggarwal, V. D., and Ouedrago, J. T., 1989, Estimation of cowpea yield loss from Strigainfestation, Trop. Agric. 66:91-92.Google Scholar
  7. Albersheim, P. and Valent, B. S., 1974, Host-pathogen interactions. VII. Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen, Plant Physiol. 53:684-687.PubMedCrossRefGoogle Scholar
  8. Alexander, C, Goodman, R. M., Gui-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahi-Goy, P., Luntz, T., Ward, E., and Ryals, J., 1993, Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein, Proc. Natl. Acad. Sci. USA 90:7327-7331.PubMedCrossRefGoogle Scholar
  9. Alves, L. M., Heisler, E. G., Kissinger, J. C., Patterson, J. M. II., I, and Kalan, E. B., 1979, Effects of controlled atmospheres in production of sesquiterpenoid stress metabolites by white potato tuber, Plant Physiol. 63:359-362.PubMedCrossRefGoogle Scholar
  10. Anderson, J. D., Bailey, B. A., Taylor, R., Sharon, A,. Avni, A., Mattoo, A. K., and Fuchs, Y., 1993, Fungal xylanase elicits ethylene biosynthesis and other defense responses in tobacco, in: Cellular and MolecularAspects of the Plant Hormone Ethylene, J. G. Pech, Latche, A.and Balague, C, eds.Kluwer Academic Publ.Dordrecht, The Netherlands, pp. 197-204.Google Scholar
  11. Anderson, J. D., Cardinale, F. C., Jennings, J. C., Norman, H. A., Avni, A., Hanania, U., and Bailey, B. A., 1997, Involvement of ethylene in protein elicitor-induced plant responses, in: Biology and Biotechnology of the Plant Hormone Ethylene, A. K. Kanellis et al., eds., Kluwer Academic Publishers, Dordrecht, pp. 267-274.Google Scholar
  12. Andrews, E., Hanowski, C., and Beiderbeck, R., 1981, Wachstumsveränderungen an Maiskeimlingen nach Befall mit haploiden Linien des Maisbrandes (Ustilago maydis), Phytopath. Z. 102:10-20.CrossRefGoogle Scholar
  13. Archer, S. A., and Hislop, E. C., 1975, Ethylene in host-pathogen relationships, Ann. Appl. Biol 81:121-126.CrossRefGoogle Scholar
  14. Atkinson, M. M., Keppier, I. D., Orlandi, E. W., Baker, C. J., and Mischke, C. F., 1990, Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco, Plant Physiol 92:215-221.PubMedCrossRefGoogle Scholar
  15. Avni, A., Bailey, B. A., Mattoo, A. K., and Anderson, J. D., 1994, Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts, Plant Physiol 106:1049-1055.PubMedCrossRefGoogle Scholar
  16. Bailey, B. A., 1995, Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca, Phytopathology 85:1250-1255.CrossRefGoogle Scholar
  17. Bailey, B. A., Dean, J. F. D., and Anderson, J. D., 1990, An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv. xanthi leaves, Plant Physiol. 94:1849-1854.CrossRefGoogle Scholar
  18. Bailey, B. A., Taylor, R., Dean, J. F. D., and Anderson, J. D., 1991, Ethylene biosynthesis-inducing endoxylanase is translocated through the xylem of Nicotiana tabacumcv. xanthi plants, Plant Physiol 97:1181-1186.Google Scholar
  19. Bailey, B. A., Korcak, R. F., and Anderson, J. D., 1993, Sensitivity to an ethylene biosynthesis-inducing endoxylanase in Nicotiana tabacumL. cv. xanthiis controlled by a single dominant gene, Plant Physiol 101:1081-1088.PubMedGoogle Scholar
  20. Bailey, B. A., Avni, A., and Anderson, J. D., 1995, The influence of ethylene and tissue age on the sensitivity of Xanthi tobacco leaves to a Trichoderma viride xylanase, Plant Cell Physiol 36:1669-1676.Google Scholar
  21. Bailey, B. A., Jennings, J. C., and Anderson, J. D., 1997a, Sensitivity of Erythroxylum coca var. coca to ethylene and fungal proteins, Weed Sci. 45:716-721.Google Scholar
  22. Bailey, B. A., Jennings, J. C., and Anderson, J. D., 1997b, The 24 kDa protein from Fusarium oxysporum f. sp. erythroxyli: Occurrence in related fungi and the effect of growth medium on its production, Can. J. Microbiol 43:45-55.PubMedCrossRefGoogle Scholar
  23. Balazs, E., Gaborjanyi, R., Toth, A., and Kiraly, Z., 1969, Ethylene production in xanthi tobacco after systemic and local virus infections, Acta Phytopathol Acad. Sci. Hung. 4:355-358.Google Scholar
  24. Ballio, A., Chain, E. B., De Leo, P., Erlanger, B. F., Mauri, M., and Tonolo, A., 1964, Fusicoccin, a new wilting toxin produced by Fusicoccum amygdaliDel., Nature 203:297.CrossRefGoogle Scholar
  25. Barkai-Golan, R., and Kopeliovitch, E., 1983, Induced ethylene evolution and climacteric-like respiration in Rhizopus-infected rin and nortomato mutants, Physiol. Plant Pathol. 22:357-362.Google Scholar
  26. Barkai-Golan, R., and Lavy-Meir, G., 1989, Effects of ethylene on the susceptibility to Botrytis cinerea infection of different tomato genotypes, Ann. Appl. Biol. 114:391-396.CrossRefGoogle Scholar
  27. Barmore, C. R., and Brown, G. E., 1985, Influence of ethylene on increased susceptibility of oranges to Diploidia natalensis, Plant Dis. 69:228-230.CrossRefGoogle Scholar
  28. Bebawi, F. F., and Eplee, R. E., 1986, Efficacy of ethylene as a germination stimulant of Striga hermonthica seed, WeedSci. 34:694-698.Google Scholar
  29. Beffa, R., Szell, M., Meuwly, P., Pay, A. V., ogeli-Lange, R., Metraux, J.-P., Neuhaus, G., Meins, F., and Nagy, F., 1995, Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco, EMBO J 14:5753-5761.PubMedGoogle Scholar
  30. Beijersbergen, J. C. M., and Bergman, B. H. H., 1973, The influence of ethylene on the possible resistance mechanism of the tulip (Tulipa spp.) against Fusarium oxysporum, Acta Bot. Neerl. 22:172.Google Scholar
  31. Bell, A.A., 1981, Biochemical mechanisms of disease resistance, Annu. Rev. Plant Physiol. 32:21-81.CrossRefGoogle Scholar
  32. Belles, J. M., and Conejero, V., 1989, Evolution of ethylene production, ACC and conjugated ACC levels accompanying symptoms development in tomato and Gynjura aurantiacaDC leaves infected with Citrus exocortis viroid (CEV), J. Phytopathol. 127:81-85.CrossRefGoogle Scholar
  33. Belles, J. M., Granell, A., Duran-Vila, N., and Conejero, V., 1989, ACC synthesis as the activated step responsible for the rise of ethylene production accompanying citrus exocortis viroid infection in tomato plants,Phytopath. 125:198-208.CrossRefGoogle Scholar
  34. Benedict, W. G., 1972, Influence of light on peroxidase activity associated with resistance of tomato cultivars to Septoria lycopersici, Can. J. Bot. 50:1931-1936.CrossRefGoogle Scholar
  35. Ben-David, A., Bashan, Y., and Okon, Y., 1986, Ethylene production in pepper (Capsicum annuum) leaves infected withXanthomonas campestrispv. vesicatoria, Physiol. Mol Plant Pathol. 29:305-316.CrossRefGoogle Scholar
  36. Bent, A. F., Innes, R. W., Ecker, J. R., and Staskawicz, B. J., 1992, Disease development in ethylene- insensitive Arabidopsis thalianainfected with virulent and avirulent Pseudomonasand Xanthomonaspathogens, Mol. Plant-Microbe Interactions 5:372-378.CrossRefGoogle Scholar
  37. Berner, D. K., Schaad, N. W., and Volksch, B., 1999, Use of ethylene-producing bacteria for stimulation of Striga spp. seed germination, Biol. Control 15:274-282.CrossRefGoogle Scholar
  38. Bemheim, F., 1942, The effect of various substances on the oxygen uptake of Blastomyces dermatiditis, J. Bacteriol. 44:533-539.Google Scholar
  39. Berryman, A. A., 1972, Resistance of conifers to invasion by bark beetle fungus associatons, BioSci. 22:598-602.CrossRefGoogle Scholar
  40. Blein, J. P., Milat, M. L., and Ricci, P., 1991, Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, Plant Physiol. 95:486-491.PubMedCrossRefGoogle Scholar
  41. Bohlmann, H., 1994, The role of thionins in plant protection, Critical Rev. Plant Sci. 13:1-16.Google Scholar
  42. Bohlmann, H., and Apel, K., 1991, Thionins, Annu. Rev. Plant Physiol. Plant Molecu. Biol. 42:227-240.CrossRefGoogle Scholar
  43. Bol, J. F., Buchel, A. S.s Knoester, M., Baladin, T. V., an Loon, L. C., and Linthorst, H. J. M., 1996, Regulation of the expression of plant defence genes, Plant Growth Regula. 18:87-91.CrossRefGoogle Scholar
  44. Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C, 1990, Plant pathogenesis-related proteins induced by virus infection,Annu. Rev. Phytopathol. 28:113-138.CrossRefGoogle Scholar
  45. Boiler, T., 1982, Ethylene-induced biochemical defenses against pathogens, in; Plant Growth Substances, P. F. Wareing, ed., Academic Press, London, pp. 303-312.Google Scholar
  46. Boiler, T., 1985, Induction of hydrolases as a defense reaction against pathogens, in: Cellular and Molecular Biology of Plant Stress, J. L. Key and T. Kosuge, eds., Alan R. Liss, Inc., New York, pp. 247-262.Google Scholar
  47. Boiler, T., 1987, Hydrolytic enzymes in plant idsease resistance, in: Plant-Microbe Interactions, Vol. 2, T. Kosuge and Nester, E. W. Nester, eds., Macmillan, New York, pp. 385-413.Google Scholar
  48. Boiler, T., 1988, Ethylene and the regulation of antifungal hydrolases in plants, in: Oxford Surveys of Plant Molecular and Cell Biology, Vol. 5, B. J. Miflin, ed., Oxford University Press, Oxford, pp. 145-174.Google Scholar
  49. Boiler, T. , 1990, Ethylene and plant-pathogen interactions, in: Polyamines and Ethylene: Biochemistry, Physiology, and Interactions, H. E. Flores, Arteca, R. N., and Shannon, J. C., eds., Am. Soc. Plant Physiologists, Rockville, MD, pp. 138-145.Google Scholar
  50. Boiler, T., 1991, Ethylene in pathogenesis and disease resistance, in: The Plant Hormone Ethylene, A. K. Mattoo and Suttle, J. C., eds., CRC Press, Boca Raton, FL, pp. 293-314.Google Scholar
  51. Boiler, T., and Vogeli, U., 1984, Vacuolar localization of ethylene-induced chitinase in bean leaves, Plant Physiol. 74:442-444.CrossRefGoogle Scholar
  52. Boiler, T., Gehri, A., Mauch, F., and Vogeli, U., 1983, Chitinase in bean leaves: Induction by ethylene, purification, properties, and possible function, Planta 157:22-31.CrossRefGoogle Scholar
  53. Bonn, W. G., Selqueira, L., and Upper, C. D., 1972, Determination of the rate of ethylene production by Pseudomonas solanacearum, Proc. Can. Phytopathol. Soc. No. 39.Google Scholar
  54. Bowles, D. J., 1990, Defense-related proteins in higher plants, Annu. Rev. Biochem. 59:873-907.PubMedCrossRefGoogle Scholar
  55. Broekaert, W. F., van Parijs, J., Allen, A. K., and Peumans, W. J., 1988, Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat, Physiol. Mol. Plant Pathol. 33:319-331.CrossRefGoogle Scholar
  56. Broglie, K. E., Gaynor, J. J., and Broglie, R. M., 1986, Ethylene-regulated gene expression: Molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris, Proc. Natl. Acad. Sci. USA 83:6820-6824.PubMedCrossRefGoogle Scholar
  57. Broglie, K. E., Biddle, P., Cressman, R., and Broglie, R. M., 1989, Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco, Plant Cell. 1:599-607.PubMedGoogle Scholar
  58. Broglie, K., Chet, I., Hollidat, M., Cressman, R., BiddleP., Knowlton, S., Mauvais, C. J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani, Science 254:1194-1197.PubMedCrossRefGoogle Scholar
  59. Brooks, C., 1944, Stem end rot of oranges and factors affecting its control, J. Agric. Res. 68:363-381.Google Scholar
  60. Brown, G. E., 1978, Hypersensitive response of orange-colored robinson tangerines to Colletotrichumgloeosporioides after ethylene treatments, Phytopathol. 68:700-706CrossRefGoogle Scholar
  61. Brown, E. G., and Barmore, C. R., 1977, The effect of ethylene on susceptibility of Robinson tangerines to anthracnose, Phytopathol. 67:120-123.CrossRefGoogle Scholar
  62. Brown, G. E., and Lee, H. S., 1993, Interactions of ethylene with citrus stem-end rot caused by Diplodia natalensis, Phytopathol. 83:1204-1208.CrossRefGoogle Scholar
  63. Bucheli, P., Doares, S. H., Albersheim, P., and Darvill, A., 1990, Host-pathogen interactions XXXVI. Partial purification and characterization of heat-labile molecules secreted by the rice blast pathogen that solubilize plant cell wall fragments that kill plant cells, Physiol. Mol. Plant Pathol. 36:159-173.CrossRefGoogle Scholar
  64. Buchenauer, H., 1998, Biological control of soil-borne diseases by rhizobacteria, J. Plant Diseases and Protection 105:329-348.Google Scholar
  65. Canfield, M. L., and Moore, L. W., 1983, Production of ethylene by Daucus carota inoculated with Agrobacterium tumefaciens and Agrobacterium rhizogenes, Z. Pflenzenphysiol. 112:471.Google Scholar
  66. Carlton, B. C, Peterson, C. E., and Tolbert, N. E., 1961, Effects of ethylene and oxygen on production of a bitter compound by carrot roots, Plant Physiol. 36:550-557.PubMedCrossRefGoogle Scholar
  67. Carr, J. P., and Klessig, D. F., 1989, The pathogenesis-related proteins of plants, in: Genetic Engineering, Principles and Methods, Vol. II, J. K. Satlow, ed., Plenum Press, New York, pp. 65-109.Google Scholar
  68. Cassab, G. I., and Varner, J. E., 1988, Cell wall proteins, Annu. Rev. Plant Physiol. Plant Mol. Biol 39:321-353.CrossRefGoogle Scholar
  69. Chalutz, E., 1973, Ethylene-induced phenylalanine ammonia-lyase activity in carrot roots, Plant Physiol. 51:1033-1036.PubMedCrossRefGoogle Scholar
  70. Chalutz, E., 1979, No role for ethylene in the pathogenicity of Penicillium digitatum, Physiol. Plant Pathol. 14:259-262.CrossRefGoogle Scholar
  71. Chalutz, E., and DeVay, J. E., 1969, Production of ethylene in vitro and in vivo by Ceratocystis fimbriata in relation to disease development, Phytopathol. 59:750-755.Google Scholar
  72. Chalutz, E., and Stahmann, M. A., 1969, Induction of pisatin by ethylene, Phytopathol. 59:1972-1973.Google Scholar
  73. Chalutz, E., DeVay, J. E., and Maxie, E. C.,1969, Ethylene-induced isocoumarin formation in carrot root tissue, Plant Physiol. 44:235-241.PubMedCrossRefGoogle Scholar
  74. Chalutz, E., Lieberman, M., and Sisler, H. D., 1977, Methionine-induced ethylene production by Penicillium digitatum, Plant Physiol. 60:402-406.PubMedCrossRefGoogle Scholar
  75. Chappell, J., Hahlbrock, K., and Boiler, T., 1984, Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase, Planta 161:475-480.CrossRefGoogle Scholar
  76. Chen, C. T., and Kao, C. H., 1993, Characteristics of fusicoccin-induced production of ethylene in detached rice leaves, Plant Physiol. Biochem. 31:121-124.Google Scholar
  77. Chou, T. W., and Yang, S. F., 1973, The biogenesis of ethylene in Penicillium digitatum, Arch. Biochem. Biophys. 157:73-82.Google Scholar
  78. Christ, U., and Mosionger, E., 1989, Pathogenesis-related proteins of tomato. I. Induction by Phytophthora infestans and other biotic and abiotic inducers and correlations with resistance, Physiol. Mol. Plant Pathol. 35:53-65.CrossRefGoogle Scholar
  79. Coleman, L. W., and Hodges, C. F., 1986, The effect of methionine on ethylene and 1-aminocyclopropane-l-carboxylic acid production by Bipolaris sorokiniana, Phytopathol. 76:851-855.CrossRefGoogle Scholar
  80. Coleman, L. W., and Hodges, C. F., 1987, Ethylene biosynthesis in Poapratensis leaves in response to injury or infection by Biopolaris sorokiniana, Phytopathol. 77:1280-1283.Google Scholar
  81. Conrath, U., Jeblick, W., and Kauss, H., 1991, The protein kinase inhibitor, K-252a, decreases elicitor-induced Ca2+ uptake and K+ release, and increases coumarin synthesis in parsley cells, FEBS 279:141-144.CrossRefGoogle Scholar
  82. Cook, S. P., and Hain, F. P., 1985, Qualitative examination of the hypersensitive response of loblolly pine, Pinus taeda L., inoculated with two fungal associates of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), Environ. Entomol. 14:396-400.Google Scholar
  83. Cook, S. P., and Hain, F. P., 1986, Defensive mechanisms of loblolly and shortleaf pine against attack by southern pine beetle, Dendroctonus frontalis Zimmermann and its fungal associate, Ceratocystis minor (Hedgecock) Hunt., J. Chem. Ecol. 12:1397-1406.Google Scholar
  84. Coupe, S. A., Taylor, J. E., and Roberts, J. A., 1997, Temporal and spatial expression of mRNAs encoding pathogenesis-related proteins during ethylene-promoted leaflet abscission in Sambucus nigra, Plant, Cell Environ. 20:1517-1524.CrossRefGoogle Scholar
  85. Coxon, D. T., Curtis, R. F., Price, K. R., and Levett, G., 1983, Abnormal metabolites produced by Daucus carota roots stored under conditions of stress, Phytochemistry 12:1881-1885.CrossRefGoogle Scholar
  86. Cutt, J. R., and Klessig, D. F., 1992, Pathogenesis-related proteins, in: Genes Involved in Plant Defense, T. Boiler and Meins, F., eds., Springer-Verlag, New York, pp. 209-243.CrossRefGoogle Scholar
  87. Daly, J. W., Seevers, P. M., and Ludden, P., 1970, Studies on wheat stem rust resistance controlled at the Sr6 locus, III. Ethylene and disease reaction, Phytopathol. 60:1648-1652.CrossRefGoogle Scholar
  88. Daniel, S., Tiemann, K., Wittkampf, U., Bless, W., Hinderer, W., and Barz, W., 1990, Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei, Planta 182:270-278.CrossRefGoogle Scholar
  89. Dasilva, E. J., Henriksson, E., and Henriksson, L. E., 1974, Ethylene production by fungi, Plant Sct Lett. 2:63- 66.CrossRefGoogle Scholar
  90. David, A. B., Bashan, Y., and Okon, Y., 1986, Ethylene production in pepper (Capsicum annuum) leavesb infected with Xanthomonas campestris pv. vesicatoria, Physiol. Mol. Plant Pathol. 29:305-316.CrossRefGoogle Scholar
  91. Davis, M. E., Miller, A. R., and Lineberger, R. D., 1992, Studies on the effects of ethylene on transformation of tomato cotyledons (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens, J. Plant Physiol. 139:309-312.CrossRefGoogle Scholar
  92. Dean, J. F. D., and Anderson, J. D., 1991, Ethylene biosynthesis-inducing xylanase. II. Purification and physical characterization of the enzyme produced by Trichoderma viride, Plant Physiol. 95:316-323.PubMedCrossRefGoogle Scholar
  93. Dean, J. F. D., Gamble, H. R., and Anderson, J. D., 1989, The ethylene biosynthesis-inducing xylanase: Its induction in Trichoderma viride and certain plant pathogens, Phytopathol. 79:1071-1078.CrossRefGoogle Scholar
  94. Dehne, H.-W., and Spengler, G., 1982, Untersuchungen zum einfluβ von ethephon auf pflanzenkrankheiten, Phytopathol. Z. 104:27-38.CrossRefGoogle Scholar
  95. Dehne, H.-W., Blankenagel, R., and Schonbeck, F., 1981, Influence of ethylene-releasing substances on the occurrences of Helminthosporium sativum on winter barley and on the yield under practical conditions, Z. Pflanzen. Pflanzenshutz. 88:206-209.Google Scholar
  96. Deikman, J., 1997, Molecular mechanisms of ethylene regulation of gene transcription, Physiol. Plant. 100:561-566.CrossRefGoogle Scholar
  97. Del Campillo, E., and Lewis, L. N., 1992, Occurrence of 9.5 cellulase and other hydrolases in flower reproductive organs undergoing major cell wall disruption, Plant Physiol. 99:1015-1020.PubMedCrossRefGoogle Scholar
  98. De Laat, A. M. M., van Loon, L. C., and Vonk, C. R., 1981, Regulation of ethylene biosynthesis in virusinfected tobacco leaves, I. Determination of the role of methionine as the precursor of ethylene, Plant Physiol. 68:256-260.PubMedCrossRefGoogle Scholar
  99. De Laat, A. M. M., and van Loon, L. C, 1982, Regulation of ethylene biosyntehsis in virus-infected tobacco leaves, Plant Physiol. 69:240-245.PubMedCrossRefGoogle Scholar
  100. De Laat, A. M. M. and van Loon, L. C, 1983a, The relationship between stimulated ethylene production and symptom expression in virus-infected tobacco leaves, Physiol. Plant Pathol. 22:261-273.Google Scholar
  101. De Laat, A. M. M., and van Loon, L. C, 1983b, Effects of temperature, light and leaf age on ethylene production and symptoms expression in virus-infected tobacco leaves, Physiol Plant Pathol 22:275-283.Google Scholar
  102. DeMunk, W. J., 1971, Bud necrosis, a storage disease of tulips. II. Analysis of disease-promoting storage conditions, Neth. J. Plant Pathol 77:177-186.CrossRefGoogle Scholar
  103. DeMunk, W. J., and De Rooy, M., 1971, The influence of ethylene on the development of 5°C pre-cooled Apeldoorn tulips during forcing, HortSci. 6:40-41.Google Scholar
  104. DeWit, P. J. G. M., Hofman, A. E. V., elthuis, G. C. M., and Kuc, J. A., 1985, Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporiumfulvum (Syn. Fulviafulva) and tomato, Plant Physiol. 77:642-647.CrossRefGoogle Scholar
  105. Dimond, A. E., and Waggoner, P. E., 1953, The cause of epinastic symptoms in Fusarium wilt of tomatoes, Phytopathol. 43:663-669.Google Scholar
  106. Dixon, R. A., and Harrison, M. J., 1990, Activation, structure and organization of genes involved in microbial defense in plants, Adv. Genet. 28:165-234.PubMedCrossRefGoogle Scholar
  107. Dixon, R. A., and Lamb, C. J., 1990, Molecular communication in interactions between plants and microbial pathogens, Annu. Rev. Plant Physiol Plant Mol. Biol. 41:339-367.CrossRefGoogle Scholar
  108. Dutta, S., and Biggs, R. H., 1991, Regulation of ethylene biosynthesis in citrus leaves infected with Xanthomonas campestris pv. citri, Physiol. Plant. 82:225-230.CrossRefGoogle Scholar
  109. Ebel, J., and Scheel, D., 1991, Elicitor recognition and signal transduction, in: Plant Gene Research: Genes Involved in Plant Defense, T. Boiler, and Meins, F., eds., Springer-Verlag, Berlin, pp. 183-205.Google Scholar
  110. Ecker, J. R., and Davis, R. W., 1987, Plant defense genes are regulated by ethylene, Proc. Natl. Acad. Sci. USA 84:5202-5206.PubMedCrossRefGoogle Scholar
  111. Egley, G. H., 1982, Ethylene stimulation of weed seed germination, Agric. and Forest Bull. 5:13-18. (Univ. Alberta).Google Scholar
  112. Elad, Y., 1988, Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control, Ann. Appl. Biol. 113:589-598.CrossRefGoogle Scholar
  113. Elad, Y., 1990, Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea, Physiol. Mol. Plant Pathol. 36:277-287.CrossRefGoogle Scholar
  114. Elad, Y., 1993, Regulators of ethylene biosynthesis or activity as a tool for reducing susceptibility of host plant tissues to infection by Botrytis cinerea, Neth. J. Plant Pathol. 99:105-113.CrossRefGoogle Scholar
  115. Elad, Y., and Evensen, K., 1995, Physiological aspects of resistance to Botrytis cinerea, Phytopathol. 85:637-643.Google Scholar
  116. Elad, Y., and Volpin, H., 1988, The involvement of ethylene and calcium in gray mold of pelargonium, ruscus, and rose plants, Phytoparasitica 16:119-131.CrossRefGoogle Scholar
  117. El-Kazzaz, M. K., Sommer, N. F., and Fortlage, R. J., 1983a, Effect of different atmospheres on postharvest decay and quality of fresh strawberries, Phytopathol. 73:282-285.CrossRefGoogle Scholar
  118. El-Kazzaz, M. K., Sommer, N. F., and Kader, A. A., 1983b, Ethylene effects on in vitro and in vivo growth of certain postharvest fruit-infecting fungi, Phytopathol. 73:998-1001.CrossRefGoogle Scholar
  119. El-Kazzaz, M. K., Chordas, A., and Kader, A. A., 1983c, Physiological and compositional changes in orange fruit in relation to modification of their susceptibility to Penicillium italicum by ethylene treatments, J. Am. Soc. Hortic. Sci. 108:618-622.Google Scholar
  120. Elkashif, M. E., Huber, D. J., and Brecht, J. K., 1989, Respiration and ethylene production in harvested watermelon fruit: Evidence for nonclimacteric respiratory behavior, J. Amer. Soc. Hort. Sci. 114:81-85.Google Scholar
  121. Eplee, R. E., 1975, Ethylene, a witchweed seed germination stimulant, Weed Sci. 23:433-436.Google Scholar
  122. Esquerre-Tugaye, M.-T., Lafitte, C., Mazau, D., Toppan, A., and Touze, A., 1979, Cell surfaces in plantmicroorganism interactions. II. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanism, Plant Physiol. 64:320-326.PubMedCrossRefGoogle Scholar
  123. Eyal, Y., Sagele, O., and Fluhr, R., 1992, Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene, Plant Mol. Biol. 19:589-599.PubMedCrossRefGoogle Scholar
  124. Farmer, E. E., and Helgeson, J. P., 1987, An extracellular protein from Phytophthora parasitica var. nicotianae is associated with stress metabolite accumulation in tobacco callus, Plant Physiol. 85:733-740.PubMedCrossRefGoogle Scholar
  125. Fehrmann, H., and Dimond, A. E., 1967, Peroxidase activity and Phytophthora resistance in different organs of the potato plant, Phytopathol. 57:68-72.Google Scholar
  126. Felix, G., and Meins, F., 1987, Ethylene regulation of β-l,3-glucanase in tobacco, Planta 172:386-392.CrossRefGoogle Scholar
  127. Felix, G., Grosskopf, D. G., Regenass, M., Basse, C. W., and Boiler, T., 1991, Elicitor-induced ethylene biosynthesis in tomato cells: Characterization and use as a bioassay for elicitor action, Plant Physiol 97:19-25.PubMedCrossRefGoogle Scholar
  128. Ferguson, I. B., and Mitchell, R. E., 1985, Stimulation of ethylene production in bean leaf discs by the Pseudomonas phytotoxin coronatine, Plant Physiol. 77:969-973.PubMedCrossRefGoogle Scholar
  129. Flaishman, M. A., and Kolattukudy, P. E., 1994, Timing of fungal invasion using host’s ripening hormone as a signal, Proc. Natl. Acad. Sci. USA 91:6579-6583.PubMedCrossRefGoogle Scholar
  130. Frankenberger, W. T. Jr., and Arshad, M., 1995, Phytohormones in Soils: Microbial Production and Function, Marcel Dekker, Inc., New York.Google Scholar
  131. Freebairn, H. T., and Buddenhagen, I. W., 1964, Ethylene production by Pseudomonas solanacearum, Nature 202:313-314.PubMedCrossRefGoogle Scholar
  132. Fuchs, Y., and Anderson, J. D., 1987, Purification and characterization of ethylene inducing proteins from cellulysin, Plant Physiol 84:732-736.PubMedCrossRefGoogle Scholar
  133. Fuchs, Y., Saxena, A., Gamble, H. R., and Anderson, J. D., 1989, Ethylene biosynthesis-inducing protein from cellulysin is an endoxylanase, Plant Physiol 89:138-143.PubMedCrossRefGoogle Scholar
  134. Fukuda, H., Fujii, T., and Ogawa, T., 1986, Preparation of a cell-free ethylene-forming system from Penicillium digitatum, Agric. Biol. Chem. 50:977-981.CrossRefGoogle Scholar
  135. Gaborjanyi, R., Balazs, E., and Kiraly, E., 1971, Ethylene production, tissue sensescence and local virus infections, Acta Phytopathol. Acad. Sci. Hung. 6:51-55.Google Scholar
  136. Geballe, G. T., and Galston, A. W., 1982, Ethylene as an effector of wound-induced resistance to cellulase in oat leaves, Plant Physiol. 70:788-790PubMedCrossRefGoogle Scholar
  137. Geballe, G. T., and Galston, A. W., 1983, Wound-induced lignin formation and resistance to cellulase in oat leaves, Phytopathol. 73:619-629.CrossRefGoogle Scholar
  138. Gedalovich, E., and Fahn, A., 1985, Ethylene and gum duct formation in citrus, Ann. Bot. 56:571-577.Google Scholar
  139. Geeson, J. D., Browne, K. M., and Guaraldi, F., 1986, The effects of ethylene concentration in controlled atmosphere storage of tomatoes, Ann. Appl. Biol. 108:605-610.CrossRefGoogle Scholar
  140. Gentile, I. A., and Matta, A., 1975, Production of and some effects of ethylene in relation to Fusarium wilt of tomato, Physiol. Plant Pathol 5:27-37.CrossRefGoogle Scholar
  141. Gianinazzi, S., Martin, C., and Vallee, J. C., 1970, Hypersensibilite aux virus, temperature et proteines solubles chez le Nicotiana xanthi n.c. Apparition de nouvelles macromolecules lors de la repression de la synthese virale, C. R. Acad. Sci. Paris D 270:2283-2286.Google Scholar
  142. Gomez, Lim, M. A., Kelly, P., Sexton, R., and Trewavas, A. J., 1987, Identification of chitinase mRNA in abscission zones from bean (Phaseolus vulgaris Red Kidney) during ethylene-induced abscission, Plant Cell Environ. 10:741-746.CrossRefGoogle Scholar
  143. Goodman, T. C., Montoya, A. L., Williams, S., and Chilton, M. D., 1986, Sustained ethylene production in Agrobacterium-transformed carrot disks caused by expression of the T-DNA tms gene products, J.Bacteriol. 167:387-388.PubMedGoogle Scholar
  144. Goto, M., and Hyodo, H., 1985, Role of extracellular polysaccharides of Xanthomonas campestris pv. citri in the early stage of infection, Ann. Phytopathol. Soc. Jpn. 51:22-31.CrossRefGoogle Scholar
  145. Goto, M., and Hyodo, H., 1987, Ethylene production by cell-free extract of the Kudzu strain of Pseudomonas syringae pv. phaseolicola, Plant Cell Physiol. 28:405-414.Google Scholar
  146. Goto, M., Yaguchi, Y., and Hyodo, H., 1980, Ethylene production in citrus leaves infected with Xanthomonas citri and its relation to defoliation, Physiol. Plant Pathol. 16:343-350.Google Scholar
  147. Goto, M., Ishida, Y., Takikawa, Y., and Hyodo, H., 1985, Ethylene production by the Kudzu strain of Pseudomonas syringae pv. phaseolicola causing halo blight in Pueraria lobata (Wild) Ohwi., Plant Cell Physiol. 26:141-150.Google Scholar
  148. Graham, J. H., and Linderman, R. G., 1981, Effect of ethylene on root growth, ectomycorrhiza formation, and fusarium infection of Douglas-fir, Can. J. Bot. 59:149-155.CrossRefGoogle Scholar
  149. Graham, J. H., Whiteside, J. O., and Barmore, C. R., 1984, Ethylene production by Mycosphaerellay citri and greasy spot-infected citrus leaves, Phytopathol. 74:817.Google Scholar
  150. Grierson, W., and Newhall, W. F., 1955, Tolerance to ethylene of various types of citrus fruits, Proc. Am. Soc.Hortic. Sci. 65:244-250.Google Scholar
  151. Gwinn, K. D., Stelzig, D. A., and Bhatia, S. K., 1989, Differential ethylene production by potato tuber inoculated with a compatible or an incompatible race of Phytophthora infestans, Amer. Potato J. 66:417-423.CrossRefGoogle Scholar
  152. Hadwiger, L. A., and Beckman, J. M., 1980, Chitosan as a component of pea-Fusarium solari interactions, Plant Physiol. 66:205-211.PubMedCrossRefGoogle Scholar
  153. Haga, M., Haruyama, T., Kano, H., Sekizawa, Y., Urushikazi, S., and Matsumoto, K., 1988, Dependence on ethylene of the induction of phenylalanine ammonia-lyase activity in rice leaf infected with blast fungus, Agric. Biol. Chem. 52:943-950.CrossRefGoogle Scholar
  154. Hahn, M. G., Bucheli, P., Cervone, F., Doares, S. H., O’Neill, R. A., Darvill, A., and Albersheim, P., 1989,Roles of cell wall constituents in plant-pathogen interactions, in: Plant-Microbe Interactions, Molecular and Genetic Perspectives, Vol. 3, T. Kosuge and E. W., Nester, eds., McGraw-Hill, New York, pp. 131-181.Google Scholar
  155. Halevy, A. H., Shilo, R., and Simchon, S., 1970, Effect of 2-chloroethylphosphonic acid (ethrel) on health,dormancy, and flower and corm yield of gladioli, J. Hortic. Sci. 45:427-434.Google Scholar
  156. Hammond-Kosack, K. E., Silverman, P., Raskin, I., and Jones, J. D. G., 1996, Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene, Plant Physiol. 110:1381-1394.PubMedGoogle Scholar
  157. Harrington, T. C, 1993, Plant diseases caused by Ophiostoma and Leptographium, in: Cerotycystis and Ophiostoma: Taxonomy, Ecology and Pathology, M. J. Wingfield, Seifert, K. A., and Webber, J. F., eds.,APS Press, St. Paul, MN, pp. 120-132.Google Scholar
  158. Hatton, T. T., and Cubbedge, R. H., 1981, Effects of ethylene on chilling injury and subsequent decay of conditioned early Marsh grapefruit during low-temperature storage, HortSci. 16:783-784.Google Scholar
  159. Hebard, F. V., and Shain, L., 1988, Effects of virulent and hypovirulent Endothia parasitica and their metabolites on ethylene production by bark of American and Chinese chestnut and scarlet oak,Phytopathol. 78:841-845.CrossRefGoogle Scholar
  160. Hedrick, S. A., Bell, J. N., Boiler, T., and Lamb, C. J., 1988, Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding, and infection, Plant Physiol. 86:182-186.PubMedCrossRefGoogle Scholar
  161. Henfling, J. W. D. M., Lisker, N., and Kuc, J., 1978, Effect of ethylene on phytuberin and phytuberol accumulation in potato tuber slices, Phytopathol. 68:857-862.CrossRefGoogle Scholar
  162. Hirano, T., Uritani, I., and Hyodo, H., 1991, Further investigation on ethylene production in sweet potato root tissue infected by Ceratocystis fimbriata, Nippon Shokuhin Kogyo Gakhaishi 38:249-259.CrossRefGoogle Scholar
  163. Hislop, E. C., Archer, S. A., and Hoad, G. V., 1973a, Ethylene production by healthy and Sclerotinia fructigena-infectzd apple peel, Phytochem 12:2081-2086.CrossRefGoogle Scholar
  164. Hislop, E. C., Hoad, G. V., and Archer, S. A., 1973b, The involvement of ethylene in plant diseases, in: Fungal Pathogenecity and the Plant’s Response, W. Byrde and Cutting, C. V., eds., Academic Press, New York,pp. 87-117.Google Scholar
  165. Hodges, C. F., and Campbell, D. A., 1993, Inhibition of ethylene biosynthesis and endogenous ethylene and chlorophyll content of Poa pratensis leaves infected by Bipolaris sorokiniana, J. Plant Physiol. 142:699-703.CrossRefGoogle Scholar
  166. Hodges, C. F., and Coleman, L. W., 1984, Ethylene-induced chlorosis in the pathogenesis of Bipolaris sorokiniana leaf spot of Poa pratensis, Plant Physiol. 75:462-465.PubMedCrossRefGoogle Scholar
  167. Hoffman, R. M., and Heale, J. B., 1987, 6-Methoxymellein accumulation and induced resistance to Botrytis cinerea Pers. ex Pers. in carrot slices treated wi,th phytotoxic agents and ethylene, Physiol. Mol. Plant Pathol. 30:67-75.CrossRefGoogle Scholar
  168. Hoffman, R., Roebroeck, E.„ and Heale, J. B., 1988, Effects of ethylene biosynthesis in carrot root slices on 6-methoxymellein accumulation and resistance to Botrytis cinerea, Physiol. Plant. 73:71-76.CrossRefGoogle Scholar
  169. Hoffman, T., Schmidt,, J. C, Zheng, X., and Bent, A. F., 1999, Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance, Plant Physiol.119:935-949.PubMedCrossRefGoogle Scholar
  170. Hottiger, T., and Boiler, T., 1991, Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate/2-oxoglutarate and requires oxygen and ferrous ions, Arch. Microbiol. 157:18-22.CrossRefGoogle Scholar
  171. Hughes, R. K., and Dickerson, A. G., 1989, The effect of ethylene on phenylalanine ammonia lyase (PAL) induction by a fungal elicitor in Phaseolus vulgaris, Physiol. Mol. Plant Pathol. 34:361-378.CrossRefGoogle Scholar
  172. Hyodo, H., and Uritani, I., 1984, Ethylene production in sweet potato root tissue infected by Ceratocyctis fimbriata, Plant Cell Physiol 25:1147-1152.Google Scholar
  173. Hyodo, H., and Yang, S. F., 1971, Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings, Plant Physiol 47:765-770.PubMedCrossRefGoogle Scholar
  174. Hyodo, H., Kuroda, H., and Yang, S. F., 1978, Induction of phenylalanine ammonia-lyase and increase in phenolics in lettuce leaves in relation to the development of russet spotting caused by ethylene, Plant Physiol 62:31-35.PubMedCrossRefGoogle Scholar
  175. Ibe, S. N., and Gorgan, R. C, 1985, Effect of chilling, carbon dioxide, and ethylene inhibitors on ethylene production and infestation of green bell peppers Capsicum annuum L. by Erwinia carotovora susp.carotovora, Biol. Afric. 2:24-32.Google Scholar
  176. Imaseki, H., Teranishi, T., and Uritani, I., 1968, Production of ethylene by sweet potato roots infected by black rot fungus, Plant Cell Physiol. 9:769-781.Google Scholar
  177. Ishige, F., Yamazaki, K., Mori, H., and Imaseki, H., 1991, The effects of ethylene on the coordinated synthesis of multiple proteins: Accumulation of an acidic chitinase and a basic glycoprotein induced by ethylene in leaves of azuki bean, Vigna angularis, Plant Cell Physiol 32:681 -690.Google Scholar
  178. Ishii, S., 1988, Factors influencing protoplast viability of suspension-cultured rice cells during isolation process,Plant Physiol 88:26-29.PubMedCrossRefGoogle Scholar
  179. Jaworski, J. G., and Kuc, J., 1974, Effect of ethrel and Ceratocystis fimbriata on the synthesis of fatty acids and 6-methoxy mellein in carrot root, Plant Physiol. 53:331-336.PubMedCrossRefGoogle Scholar
  180. Jennings, J. C., Apel-Birkhold, P. C., Bailey, B. A., and Anderson,, J. D., 2000, Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein, Weed Sci. 48:7-14.CrossRefGoogle Scholar
  181. Kato, Y., and Uritani, I., 1972, Ethylene biosynthesis in diseased sweet potato root tissue with special reference to the methionine system, Agric. Biol. Chem. 36:2601-2604.CrossRefGoogle Scholar
  182. Ke, D., and Saltveit, M. E., 1988, Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce, Plant Physiol. 88:1136-1140.PubMedCrossRefGoogle Scholar
  183. Keen, N. T., Tamaki, D., Kobayashi, D., Gerhold, D., Stlayton, M., Shen, H., Gold, S., Lorang, J., Thordal-Christensen, H., Dahlbeck, D., and Staskawicz, B., 1990, Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction, Mol. Plant Microbe. Interact. 3:112-121.CrossRefGoogle Scholar
  184. Kenyon, J. S., and Turner, J. G., 1992, The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine, Plant Physiol 100:219-224.PubMedCrossRefGoogle Scholar
  185. Ketring, D. L., and Melouk, H. A., 1982, Ethylene production and leaflet abscission of three peanut genotypes infected with Cercospora arachidicola Hori., Plant Physiol. 69:789-792.PubMedCrossRefGoogle Scholar
  186. Kim, Y. J., and Hwang, B. K., 1994, Differential accumulation of β-l,3-glucanase and chitinase isoforms in pepper stems infected by compatible isolates of Pseudomonas solanacearum, Physiol. Mol. Plant Pathol.45:195-209.CrossRefGoogle Scholar
  187. Kim, Y. J., and Hwang, B. K., 1996, Purification, N-terminal amino acid sequencing and antifungal activity of chitinases from pepper stems treated with mercuric chloride, Physiol Mol. Plant Pathol. 48:417-432.CrossRefGoogle Scholar
  188. Kim, Y. J., and Hwang, B. K., 1997, Isolation of a basic 34-kilodalton β-l,3-glucanase with inhibitory activity against Phytophthora capsici from pepper stems, Physiol Mol. Plant Pathol. 50:103-115.CrossRefGoogle Scholar
  189. Kim, Y. J., and Hwang, B. K., 2000, Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible, Physiol. Plant. 108:51-60.Google Scholar
  190. Kirsch, C, Hahlbrock, K., and Kombrink, E., 1993, Purification and characterization of extracellular, acidic chitinase isoenzymes from elicitor-stimulated parsley cells, Eur. J. Biochem. 213:419-425.PubMedCrossRefGoogle Scholar
  191. Kitajima, S., and Sato, F., 1999, Plant pathogenesis-related proteins: Molecular mechanisms of gene expression and protein function, J. Biochem. 125:1-8.PubMedCrossRefGoogle Scholar
  192. Knoester, M., van Loon, L. C, van den Heuvel, J., Hennig, J., Bol, J. F., and Linthorst, H. J. M., 1998, Ethylene-insensitive tobacco lacks non-host resistance against soil-borne fungi, Proc. Natl Acad. Sci. USA 95:1933-1937.PubMedCrossRefGoogle Scholar
  193. Knoester, M., Pieterse, C. M. J., Bol, J. F., van Loon, L. C, 1999, Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application, Molec. Plant. Micro.Interact. 12:720-727.CrossRefGoogle Scholar
  194. Koch, F., Baur, M., Burba, M., and Elstner, E. F., 1980, Ethylene formation by Beta vulgaris leaves during systemic (beet mosaic virus and beet mild yellowing virus, BMV and BMYV) or necrotic (Cercospora beticola Sacc.) disease, Phytopathol. Z. 98:40-46.CrossRefGoogle Scholar
  195. Kombrink, E., and Hahlbrock, K., 1986, Responses of cultured parsley cells to elicitors from phytopathogenic fungi. Timing and dose dependency of elicitor-induced reactions, Plant Physiol. 81:216-221.PubMedCrossRefGoogle Scholar
  196. Kozaka, T., and Teraoka, T., 1978, Ethylene evolution by rice plants infected with Pyricularia oryzae Cav. in relation to stunting of diseased plants, Ann. Phytopathol. Soc. Jpn. 43:549-556.CrossRefGoogle Scholar
  197. Kurosaki, F., Tsurusawa, Y., and Nishi, A., 1987, Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells, Plant Physiol. 85:601-604.PubMedCrossRefGoogle Scholar
  198. Lagoke, S. T. O., Parkinson, V., and Agunbiade, R. M., 1991, Parasitic weeds and control methods in Africa, in: Combating Striga in Africa, S. K. Kim, ed., Proc. Intl. Workshop Organized by IITA, ICRISAT, and IDRC, 22-24, August 1988: IITA, Ibadan, pp. 3-14.Google Scholar
  199. Lamb, C. J., Lawton, M. A., Dron, M., and Dixon, R. A., 1989, Signals and transduction mechanisms for activation of plant defenses against microbial attack, Cell 56:215-224.PubMedCrossRefGoogle Scholar
  200. Lawton, M. A., and Lamb, C. J., 1987, Transcriptional activation of plant defense genes by fungal elicitor, wounding and infection, Mol. Cell Biol 7:335-341.PubMedGoogle Scholar
  201. Lawton, K. A., Potter, S. L., Uknes, S., and Ryals,, J., 1994, Acquired resistance signal transduction in Arabidopsis is ethylene independent, Plant Cell 6:581-588.PubMedGoogle Scholar
  202. Lawton, K. A., Weymann, K., Friedrich, L. V., ernooij, B., Uknes, S., and Ryals,, J., 1995, Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene, Mol.. Plant-Microbe Interact. 8:863-870.PubMedCrossRefGoogle Scholar
  203. Lee, S. C., Hong, J. K., Kim, Y. J., and Hwang, B. K., 2000, Pepper gene encoding thionine is differentially induced by pathogens, ethylene and methyljasmonate, Physiol. Molec. Plant Pathol. 56:207-216.CrossRefGoogle Scholar
  204. Lee, Y. K., and Hwang, B. K., 1996, Differential induction and accumulation of β-l,3-glucanase and chitinase isoforms in the intercellular space and leaf tissues of pepper by Xanthomonas compestris pv. vesicatoria infection, J. Phytopathol. 144:79-87.CrossRefGoogle Scholar
  205. Lee, Y. K., Kim, Y. J., and Hwang, B. K., 1994, Bacterial multiplications and electrophoretic patterns of soluble proteins in compatible and incompatible interactions of pepper leaves with Xanthomonas compestris pv. vesicatoria, Korean J. Plant Pathol. 40:305-313.Google Scholar
  206. Linthorst, H. J. M., 1991, Pathogenesis-related proteins of plants, Plant Sci. 10:123-150.Google Scholar
  207. Lisker, N., Cohen, L., Chalutz, E., and Fuchs, Y., 1983, Fungal infection suppress ethylene-induced phenylalanine ammonia-lyase in grapefruits, Physiol Plant Pathol. 22:331-338.Google Scholar
  208. Liu, D., Raghothama, K. G., Hasegawa, P. M., and Bressan, R. A., 1994, Resistance to the pathogen Phytophthora infestans in transgenic potato plants that over-express osmotin, Proc. Natl. Acad. Sci. USA 91:1888-1892.PubMedCrossRefGoogle Scholar
  209. Lockhart, C. L., Forsyth, F. R., and Eaves, C. A., 1968, Effect of ethylene on development of Gloeosporium album in apple and on growth of the fungus in culture, Can. J. Plant Sci. 48:557-559.CrossRefGoogle Scholar
  210. Lotan, T., and Fluhr, R., 1990, Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a nonethylene pathway for induction, Plant Physiol 93:811-817.PubMedCrossRefGoogle Scholar
  211. Lovrekovich, L., Lovrekovich, H., and Stahmann, M. A., 1968, The importance of peroxidase in the wildfire disease, Phytopathol. 58:193-198.Google Scholar
  212. Lu, S.-F., Tzeng, D. D., and Hsu, S.-T., 1989, In vitro and in vivo ethylene production in relation to pathogenesis of Pseudomonas solanacearum (Smith) on Lycopersicon esculentum M., Plant Protection Bull 31:60-70.Google Scholar
  213. Lund, B. M., 1973, The effect of certain bacteria on ethylene production by plant tissue, in: Fungal Pathogenicity and the Plant’s Response, W. Byrde and Cutting, C. V., eds., Academic Press, New York, pp. 69.Google Scholar
  214. Lund, B. M., and Mapson, L. W., 1970, Stimulation of Erwinia carotovora of the synthesis of ethylene in cauliflower tissue, Biochem. J. 119:251-263.PubMedGoogle Scholar
  215. Lund, S. T., Stall, R. E., and Klee, H. J., 1998, Ethylene regulates the susceptible response to pathogen infection in tomato, Plant Cell 10:371-381.PubMedGoogle Scholar
  216. Macko, V., Woodbury, W., and Stahmann, M. A., 1968, The effect of peroxidase on the germination and growth of mycelium ofPuccinia graminis f. sp. tritici Phytopathol.58:1250-1254.Google Scholar
  217. Marco, S., Levy, D., and Aharoni, N., 1976, Involvement of ethylene in the suppression of hypocotyl elongation in CMV-infected cucumbers,Physiol. Plant. Pathol.8:1-17.CrossRefGoogle Scholar
  218. Marte, M., Buonaurio, R., and Dellatorre, G., 1993, Induction of systemic resistance to tobacco powdery mildew by tobacco mosaic virus, tobacco necrosis virus or ethephon,J. Phytopathol. 138:137-144.CrossRefGoogle Scholar
  219. Martin, W. R., Morgan, P. W., Sterling, W. L., and Kenerley, C. M., 1988, Cotton fleahopper and associated microorganisms as components in the production of stress ethylene by cotton,Plant Physiol.87:280-285.PubMedCrossRefGoogle Scholar
  220. Mauch, F., and Staehelin, L. A., 1989, Functional implications of the subcellular localization of ethylene-induced chitinase and β-l,3-glucanase in bean leaves,Plant Cell.1:447-457.PubMedGoogle Scholar
  221. Mauch, F., Hadwiger, L. A., and Boiler, T., 1984, Ethylene: Symptom, not signal for the induction of chitinase and (β-1,3-glucanase in pea pods by pathogens and elicitors,Plant Physiol.76:607-611.PubMedCrossRefGoogle Scholar
  222. Mauch, F., Hadwiger, L. A., and Boiler, T., 1988a, Antifungal hydrolases in pea tissue. I. Purification and characterization of two chitinases and two (β-1,3-glucanases differentially regulated during development and in response to fungal infection,Plant Physiol.87:325-333.PubMedCrossRefGoogle Scholar
  223. Mauch, F., Mauch-Mani, B., and Boiler,, T., 1988b, Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-l,3-glucanase,Plant Physiol.88:936-942.PubMedCrossRefGoogle Scholar
  224. McCormack, A. A., 1971, Effect of ethylene degreening on decay of Florida citrus fruit,Proc. Fla. State Hortic.Soc. 84:270-272.Google Scholar
  225. McGrath, R. B., and Ecker, J. R., 1998, Ethylene signalling in Arabidopsis: Events from the membrane to the nucleus,Plant Physiol. Biochem.36:103-113.CrossRefGoogle Scholar
  226. Memelink, J., Linthorst, H. J. M., Schilperoort, R. A., and Hoge, J. H. C, 1990, Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns,Plant Mol. Biol. 14:119-126.PubMedCrossRefGoogle Scholar
  227. Metraux, J. P., and Boiler, T., 1986, Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections,Physiol. Mol. Plant Pathol.28:161-169.CrossRefGoogle Scholar
  228. Michniewicz, M., Czerwinska, E., Rozej, B., and Bobkiewicz, W., 1983, Control of growth and development of isolates of Fusarium culmorum (W.G.Sm) Sacc. of different pathogenicity to wheat seedlings by plant growth regulators, II. Ethylene,Acta Physiol. Plant.5:189-198.Google Scholar
  229. Miller, A. R., and Pengelly, W. L., 1984, Ethylene production by shoot-forming and unorganized crown-gall tumor tissues ofNicotiana andLycopersicon culturedin vitro,Planta 161:418-424.CrossRefGoogle Scholar
  230. Mitchell, R. E., 1982, Coronatine production by some phytopathogenic pseudomonads,Physiol. Plant Pathol.20:83-89.CrossRefGoogle Scholar
  231. Montalbini, P., and Elstner, E. F., 1977, Ethylene evolution by rust-infected, detached bean (Phaseolus vulgaris L.) leaves susceptible and hypersensitive toUromyces phaseoli (Pers.) Wint.,Planta 135:301-306.CrossRefGoogle Scholar
  232. Nakagaki, Y., Hirai, T., and Stahmann, M. A., 1970. Ethylene production by detached leaves infected with tobacco mosaic virus,Virology 40:1-9.PubMedCrossRefGoogle Scholar
  233. Nemestothy, G. S., and Guest, D. I., 1990, Phytoalexin accumulation, phenylalanine ammonia lyase activity and ethylene biosynthesis in fosetyl-Al treated resistant susceptible tobacco cultivars infected with Phytophthora nicotianae var.nicotianae, Physioil. Mol. Plant Pathol.37:207-219.CrossRefGoogle Scholar
  234. Nichols, E. J., Beckman, J. M., and Hadwiger, L. A., 1980, Glycosidic enzyme activity in pea tissue and pea-Fusarium solani interactions,Plant Physiol.66:199-204.PubMedCrossRefGoogle Scholar
  235. Nickerson, W. J., 1948, Ethylene as a metabolic product of the pathogenic fungus,Blastomyces dermatitidis,Arch. Biochem.17:225-233.Google Scholar
  236. Ohtsubo, N., Mitsuhara, I., Koga, M., Seo, S., and Ohashi, Y., 1999, Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco,Plant Cell Physiol.40:808-817.CrossRefGoogle Scholar
  237. Okumura, K., Hyodo, H., Kato, M., Ikoma, Y., and Yano, M., 1999, Ethylene biosynthesis in sweet potato root tissue infected by black rot fungus (Ceratocystis fimbriata),Postharvest Biol. Technol.17:117-125.CrossRefGoogle Scholar
  238. Olien, W. C, and Bukovac, M. J., 1982, Ethephon-induced gummosis in sour cherry,Plant Physiol.70:547-555.PubMedCrossRefGoogle Scholar
  239. Osborne, D. J., 1989, Abscission,Crit. Rev. Plant Sci 8:103-129.CrossRefGoogle Scholar
  240. Owen, D. R., Lindhal, K. Q. Jr., Wood, D. L., and Parmeter, J. R. Jr., 1987, Pathogenicity of fungi isolated fromDendroctonus valens, D.brevicomis, andD. ponderosae to pine seedlings,Phytopathol.77:631-636.CrossRefGoogle Scholar
  241. Paine, T. D., 1984, Seasonal response of ponderosa pine to inoculation of the mycangial fungi from the western pine beetle,Can. J. Bot.62:551-555.CrossRefGoogle Scholar
  242. Paine, T. D., and Stephen, F. M, 1987, Fungi associated with the southern pine beetle: Avoidance of the induced response in loblolly pine,Oecologia 74:377-379.CrossRefGoogle Scholar
  243. Paradies, I., Humme, B., Hoppe, H. H., Heitefuss, R., and Elstner, E. F., 1979, Induction of ethylene formation in bean (Phaseolus vulgaris) hypocotyl segments by preparations isolated from germ tube cell walls ofUromyces phaseoli,Planta 146:193-197.CrossRefGoogle Scholar
  244. Paradies, I., Konze, J. R., Elstner, E. F., and Paxton, J., 1980, Ethylene: Indicator but not inducer of phytoalexin synthesis in soybean,Plant Physiol.66:1106-1109.PubMedCrossRefGoogle Scholar
  245. Pegg, G. F., 1976a, The response of ethylene-treated tomato plants to infection byVerticillium albo-atrum,Physiol. Plant Pathol.9:215-226.Google Scholar
  246. Pegg, G. F., 1976b, The involvement of ethylene in plant pathogenesis, in:Encyclopedia of Plant Pathology, New Series, R. Heltfuss and Williams, P. H., eds.,Springer-Verlag, Heidelberg, pp. 582-591.Google Scholar
  247. Pegg, G. F., 1977, Glucanohydrolases of higher plants: A possible defense mechanism against parasitic fungi,in:Cell Wall Biochemistry Related to Specificity in Host-Plant Pathogen Interactions, B. Solheim and Raa, J., eds., Universitatsforlaget, Tromso, pp. 305-345.Google Scholar
  248. Pegg, G. F., 1981, The involvement of growth regulators in the diseased plant, in:Effects of Disease on the Physiology of the Growing Plant, P. G. Ayres, ed., Soc. Exp. Biol. Semin. Ser. 11, Cambridge Univ.Press, Cambridge, pp. 149-177.Google Scholar
  249. Pegg, G. F., and Cronshaw, D. K., 1976a, Ethylene production in tomato plants infected withVerticillium albo-atrum,Physiol. Plant Pathol.8:279-295.CrossRefGoogle Scholar
  250. Pegg, G. F., and Cronshaw, D. K., 1976b, The relationship of in vitro to in vivo ethylene production in Pseudomonas solanacearum infection of tomato,Physiol. Plant Pathol.9:145-154.CrossRefGoogle Scholar
  251. Pegg, G. F., and Young, D. H., 1981, Changes in glycosidase activity and their relationship to fungal colonization during infection of tomato byVerticillium albo-atrum, Physiol. Plant Pathol.19:371-382.Google Scholar
  252. Pegg, G. F., and Young, D. H., 1982, Purification and characterization of chitinase enzymes from healthy and Verticillium albo-atrum-in fected tomato plants and fromV. albo-atrum, Physiol. Plant Pathol.21:389-409.Google Scholar
  253. Penninckx, I. A. M. A., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., De Samblanx, G. W., Buchala,A., Metraux, J.-P., Manners, J. M., and Broekaert, W. F., 1996, Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway, Plant Cell 8:2309-2323.PubMedGoogle Scholar
  254. Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J.-P., and Broekaert, W. F., 1998,Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis, Plant Cell 10:2103-2113.PubMedGoogle Scholar
  255. Peters, W. J., and Roberts, D. R., 1977, Ethrel bipyridilium synergism in slash pine, in: Proc. of Lightwood Res.Coord. Council, Atlantic Beach, FL, pp. 78-83.Google Scholar
  256. Peters, W. J., Roberts, D. R., and Munson, J. W., 1978, Ethrel-diquat-paraquat interactions in lightwood formation, in: Proc. of Lightwood Res. Coord. Council, Atlantic Beach, FL, pp. 31-39.Google Scholar
  257. Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C, 1998, A novel signaling pathway controlling induced systemic resistance in Arabidopsis,Plant Cell 10:1571-1580.PubMedGoogle Scholar
  258. Popp, M. P., Johnson, J. D., and Lesney, M. S., 1995a, Response of slash pine to inoculation with bark beetle vectored fungi, Tree Physiol. 15:619-623.PubMedGoogle Scholar
  259. Popp, M. P., Johnson, J. D., and Lesney, M. S., 1995b, Changes in ethylene production and monoterpene concentration in slash pine and loblolly pine following inoculation with bark beetle vector fungi, Tree Physiol. 15:807-812.Google Scholar
  260. Popp, M. P., Lesney, M. S., and Davis, J. M., 1997, Defense responses elicited in pine cell suspension cultures,Plant, Cell, Tissue, Organ, Culture 47:199-206.CrossRefGoogle Scholar
  261. Portmann, A., and Elstner, E. F., 1983, Ethylene formation in leaves of different barley cultivars during primary infection by Erysiphe graminis f. sp. hordei, Z. Pflanzen. Pflanzenshutz. 90:634-640.Google Scholar
  262. Preisig, C. L., and Kuc, J. A., 1987, Inhibition by salicylhydroxamic acid, BW755C, eicosatetraynoic acid, and disulfiram of hypersensitive resistance elicited by arachidonic acid or poly-L-Iysine in potato tuber, Plant Physiol. 84:891-894.PubMedCrossRefGoogle Scholar
  263. Pritchard, D. W., and Ross, A, F., 1975, The relationship of ethylene to formation of tobacco mosaic: Virus lesions in hypersensitive responding tobacco leaves with and without induced resistance, Virology 64:295-307.PubMedCrossRefGoogle Scholar
  264. Prince, A., Stephens, C. T., and Herner, R. C., 1988, Pathogenicity, fungicide resistance and ethylene production of Penicillium spp. isolated from tulip bulbs, Phytopathol. 78:682-686.CrossRefGoogle Scholar
  265. Reinhardt, D., Wiemken, A., and Boiler, T., 1991, Induction of ethylene biosynthesis in compatible and incompatible interactions of soybean roots with Phytophthora megasperma f. sp. glycinea and its relation to phytoalexin accumulation, J. Plant Physiol 138:394-399.CrossRefGoogle Scholar
  266. Reuveni, M., and Cohen, Y., 1978, Growth retardation and changes in phenolic compounds, with special reference to scopoletin, in mildewed and ethylene-treated tobacco plants, Physiol. Plant Pathol. 12:179-189.CrossRefGoogle Scholar
  267. Resende, M. L. V., Mepsted, R., Flood, J., and Cooper, R. M., 1996, Water relations and ethylene production as related to symptom expression in cocoa seedlings infected with defoliating and non-defoliating isolates of Verticillium dahliae, Plant Pathol. 45:964-972.CrossRefGoogle Scholar
  268. Rhodes, J. M., and Wooltorton,, L. S. C., 1978, The biosynthesis of phenolic compounds in wounded plant storage tissue, in: Biochemistry of Wounded Plant Tissues, G. Kahl, ed., Walter de Gruyter, Berlin, pp.243-286.Google Scholar
  269. Rhodes, M. J. C, and Wooltorton, L. S. C, 1973, Stimulation of phenolic acid and lignin biosynthesis in swede root tissue by ethylene, Phytochemistry 12:107-118.CrossRefGoogle Scholar
  270. Rickauer, M., Bottin, A., and Esquerre-Tugaye, M.-T., 1992, Regulation of proteinase inhibitor production in tobacco cells by fungal elicitors, hormonal factors and jasmonate, Plant Physiol. Biochem. 30:579-584.Google Scholar
  271. Rickauer, M., Fournier, J., Pouenat, M. L., Berthalon, E., Bottin, A., and Esquerre-Tugaye,, M.-T., 1990, Early changes in ethylene synthesis and lipoxygenase activity during defense induction in tobacco cells, Plant Physiol. Biochem. 28:647-653.Google Scholar
  272. Rickey, T. M., and Belknap, W. R., 1991, Comaprison of the expression of several stress-responsive genes in potato tubers, Plant Molecu. Biol. 16:1009-1018.CrossRefGoogle Scholar
  273. Riov, J., Monselise, S. P., and Kahan, R. S., 1969, Ethylene-controlled induction of phenylalanine ammonia lyase in citrus fruit peel, Plant Physiol. 44:631-635.PubMedCrossRefGoogle Scholar
  274. Roberts, J. A., Coupe, S. A., Whitelaw, C. A., and Taylor, J. E., 1997, Spatial and temporal expression of abscission-related genes during ethylene-promoted organ shedding, in: Biology and Biotechnology of the Plant Hormone Ethylene, A. Kanellis, Chang, C., Kende, H., and Grierson, D., eds., NATO Series,Kluwer Academic Press, Dordrecht, pp. 185-190.CrossRefGoogle Scholar
  275. Roberts, W. K., and Selitrennikoff, C. P., 1988, Plant and bacterial chitinases differ in antifungal activity, J.Gen. Microbiol. 134:169-176.Google Scholar
  276. Robson, T. O., and Broad, H. R., 1989, Striga: Improved Management in Africa, FAO Plant Production and Protection Paper 96, Rome, pp. 205.Google Scholar
  277. Roby, D., Toppan, A., and Esquerre-Tugaye,, M.-T., 1985, Cell surfaces in plant-microorganism interactions,V. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoprotein in plants, Plant Physiol. 77:700-704.PubMedCrossRefGoogle Scholar
  278. Roby, D., Toppan, A., and Esquerre-Tugaye, M.-T., 1986, Cell surfaces in plant-microorganism interactions,VI. Elicitors of ethylene from Colletotrichum legenariumtrigger chitinase activity in melon plants, Plant Physiol. 81:228-233.PubMedCrossRefGoogle Scholar
  279. Roby, D., and Esquerre-Tugaye, M.-T., 1987, Induction of chitinases and of translatable mRNA for the enzymes in melon plants infected with Colletotrichum legenarium, Plant Sci. 52:175-185.CrossRefGoogle Scholar
  280. Roby, D., Toppan, A., and Esquerre-Tugaye, M.-T., 1989, Systematic induction of chitinase activity and resistance in melon plants upon fungal infection or elicitor treatment, Physiol. Mol. Plant Pathol. 33:409-417.CrossRefGoogle Scholar
  281. Roby, D., Broglie, K., Gaynor, J., and Broglie, R., 1991, Regulation of a chitinase gene promotor by ethylene and elicitors in bean protoplasts, Plant Physiol. 97:433-439.PubMedCrossRefGoogle Scholar
  282. Roggero, P., and Pennazio, S., 1988, Biochemical changes during the nectrotic systemic infection of tobacco plants by potato virus Y, necrotic strain, Physiol. Molecu. Plant Pathol. 32:105-113.CrossRefGoogle Scholar
  283. Ross, A. F., and Pritchard, D. W., 1972, Local and systemic effects of ethylene on tobacco mosaic virus lesions in tobacco, Phytopathol. 62:786-788.Google Scholar
  284. Ross, A. F., and Williamson, C. E., 1951, Physiologically active emanations from virus-infected plants,Phytopathol. 41:431-438.Google Scholar
  285. Sand, P. F., and Manley, J. D., 1990, The witchweed eradication program survey, regulatory and control, in:Witchweed Research and Control in the United States. P. F. Sand, Eplee, R. E., and Westbrooks, R. G.,eds.. Weed Sci. Soc. Am., Champaign, pp. 144-150.Google Scholar
  286. Schiffmann-Nadel, M., Michaely, H., Zauberman, G., and Chet, I., 1985, Physiological changes occurring in picked climacteric fruit infected with different pathogenic fungi, Phytopathol. Z. 113:227-284.CrossRefGoogle Scholar
  287. Schlumbaum, A., Mauch, F. V., ogeli, U., and Boiler, T., 1986, Plant chitinases are potent inhibitors of fungal growth, Nature 324:365-367.CrossRefGoogle Scholar
  288. Sexton, R., and Roberts, J. A., 1989, Cell biology of abscission, Annu. Rev. Plant Physiol 33:133-162.CrossRefGoogle Scholar
  289. Shain, L., and Miller, J. B., 1988, Ethylene production by excised sapwood of clonal eastern cottonwood and the compartmentalization and closure of seasonal woods, Phytopathol 78:1261.CrossRefGoogle Scholar
  290. Shetty, H. S., and Kumar, V. U., 1999, Signaling in plants during induction of resistance against pathogens,Curr. Sci. 76:640-646.Google Scholar
  291. Siefert, F., and Grossmann, K., 1997, Induction of chitinase and β-l,3-glucanase activity in sunflower suspension cells in response to an elicitor from Phytophthora megasperma f.sp. glycinea(Pmg). Evidence for regulation by ethylene and 1-aminocyclopropane-l-carboxylic acid (ACC), J. Exptl. Bot. 48:2023-2029.Google Scholar
  292. Siefert, F., Langebartels, C, Boiler, T., and Grossmann, K., 1994, Are ethylene and 1-aminocyclopropane-l-carboxylic acid involved in the induction of chitinase and β-l,3-glucanase activity in sunflower cell-suspension cultures? Planta 192:431-440.CrossRefGoogle Scholar
  293. Smith, K. A., and Restall, S. W. F., 1971, The occurrence of ethylene in anaerobic soil, J. Soil Sci. 22:430-443.CrossRefGoogle Scholar
  294. Smith, W. H., Meigh, D. F., and Parker, J. C, 1964, Effect of damage and fungal infection on the production of ethylene by carnations. Nature 204:92-93.CrossRefGoogle Scholar
  295. Smith-Becker, J., Marois, E., Huguet, E. J., Midland, S. L., Sims, J. J., and Keen, N. T., 1998, Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems, Plant Physiol. 116:231-238.PubMedCrossRefGoogle Scholar
  296. Song, F.-M., and Zheng, Z., 1998, The correlation between inhibition of ethylene production and trifluralin-induced resistance of cotton seedlings against Fusarium oxysporum f. sp. vasinfectum, Acta Phytophysiol.Sinica. 24:111-118.Google Scholar
  297. Southwick, S. M., Davies, F. S., El-Gholl, N. E., and Schoulties, C. L., 1982, Ethylene, fungi and summer fruit drop of navel orange, J. Am. Soc. Hortic. Sci. 107:800-804.Google Scholar
  298. Spanu, P., and Boiler, T., 1989a, Ethylene biosynthesis in tomato infected by Phytophthora infestans, in:Biochemical and Biophysiological Aspects of Ethylene Production in Lower and Higher Plants, H.Clijsters, ed., Kluwer Academic Publishers, pp. 255-260.Google Scholar
  299. Spanu, P., and Boiler, T., 1989b, Ethylene biosynthesis in tomato plants infected by Phytophthora infestans, J.Plant. Physiol. 134:533-537.CrossRefGoogle Scholar
  300. Stahmann, M. A., Clare, B. G., and Woodbury, W., 1966, Increased disease resistance and enzyme activity induced by ethylene and ethylene production by black rot infected sweet potato tissue. Plant Physiol.41:1505-1512.PubMedCrossRefGoogle Scholar
  301. Stall, R. E., and Hall, C. B., 1984, Chlorosis and ethylene production in pepper leaves infected by Xanthomonas campestris pv. vesicatoria, Phytopathol. 74:373-375.CrossRefGoogle Scholar
  302. Stermer, B. A., and Hammerschmidt, R., 1987, Association of heat shock induced resistance to disease with increased accumulation of insoluble extensin and ethylene synthesis, Phyhsiol. Mol. Plant Pathol. 31:453-461.CrossRefGoogle Scholar
  303. Strauch, J. C, Dow, J. M., Miligan, D. E., Parra, R., and Daniels, M. J., 1990, Induction of hydrolytic enzymes in Brassica campestris in response to pathovars of Xanthomonas campestris, Plant Physiol. 93:238-243.CrossRefGoogle Scholar
  304. Swart, A., and Kamerbeek, G. A., 1976, Different ethylene production in vitro by several species and formae speciales of Fusarium, Neth. J. Plant Pathol. 82:81-84.CrossRefGoogle Scholar
  305. Swart, A., and Kamerbeek, G. A., 1977, Ethylene production and mycelium growth of the tulip strain of Fusarium oxysporum as influenced by shaking of and oxygen supply to the culture medium, Physiol.Plant. 39:38-44.CrossRefGoogle Scholar
  306. Tagu, D., Walker, N., Ruiz-Avila, L., Burgess, S., Martinez-Izquierdo, J. A., Leguay, J. J., Netter, P., and Puigdomenech, P., 1992, Regulation of the maize HRGP gene expression by ethylene and wounding mRNA accumulation and qualitative expression analysis of the promoter by microprojectile bombardment, Plant Mol. Biol. 20:529-538.PubMedCrossRefGoogle Scholar
  307. Taylor, J. E., Coupe, S. A., Picton, S., and Roberts, J. A., 1994, Characterization and accumulation pattern of an mRNA encoding an abscission-related β-1, 4-glucanase from leaflets of Sambucus nigra, Plant Molec.Biol. 24:961-964.CrossRefGoogle Scholar
  308. Taylor, J. E., Webb, S. T. J., Coupe, S. A., Tucker, G. A., and Roberts, J. A., 1993, Changes in polygalacturonase activity and solubility of polyuronides during ethylene-stimulated leaf abscission in Sambucus nigra, J. Exptl. Bot. 44:93-98.CrossRefGoogle Scholar
  309. Thomma, B. P. H. J., Eggermont, K., Tierens, K. F. M.-J., and Broekaert, W. F., 1999, Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea, Plant Physiol. 121:1093-1101.PubMedCrossRefGoogle Scholar
  310. Tobias, L., Fraser, R. S. S., and Gerwitz, A., 1989, The gene-for-gene relationship between Capsicum annuum L. and tobacco mosaic virus effects on virus multiplication, ethylene, asynthesis and accumulation of pathogenesis-related proteins, Physiol Mol. Plant Pathol. 35:271-286.CrossRefGoogle Scholar
  311. Toppan, A., Roby, D., and Esquerre-Tugaye, M.-T., 1982, Cell surfaces in plant-microorganism interactions,III. In vivo effect of ethylene on hydroxyproline-rich glycoprotein accumulation in the cell wall of diseased plants, Plant Physiol 70:82-86.PubMedCrossRefGoogle Scholar
  312. Toppan, A., and Esquerre-Tugaye, M.-T., 1984, Cell surfaces in plant-microorganism interactions. IV. Fungal glycopeptides which elicit the synthesis of ethylene in plants, Plant Physiol 75:1133-1138.PubMedCrossRefGoogle Scholar
  313. Tzeng, D. D., and DeVay, J. E., 1985, Physiological responses of Gossypium hirsutum L. to infection by defoliating and non-defoliating pathotypes of Verticillium dahliae Kleb., Physiol. Plant Pathol 26:57-72.CrossRefGoogle Scholar
  314. Uegaki, R., Fujimori, T., Kaneko, H., Kubo, S., and Kato, K., 1980, Phytuberin and phytuberol, sesquiterpenes from Nicotiana tabacum treated with ethrel, Phytochemistry 19:1543-1544.Google Scholar
  315. Vance, C. P., Kirk, T. K., and Sherwood, R. T., 1980, Lignification as a mechanism of disease resistance,Annu. Rev. Phytopathol 18:259-288.CrossRefGoogle Scholar
  316. van Loon, L. C, 1977, Induction by 2-chloroethylphosphonic acid of viral-like lesions, associated proteins and systemic resistance in tobacco, Virology 80:417-420.PubMedCrossRefGoogle Scholar
  317. van Loon, L. C, 1983, The induction of pathogenesis-related proteins by pathogens and specific chemicals,Neth. J. Plant Pathol. 89:265-273.CrossRefGoogle Scholar
  318. van Loon, L. C., 1985, Pathogenesis-related proteins, Plant Mol. Biol. 4:111-116.CrossRefGoogle Scholar
  319. van Loon, L. C., 1989, Stress proteins in infected plants, in: Plant-Microbe Interactions, Vol. 3, T. Kosuge and E. W. Nester, eds., McGraw-Hill, New York, pp. 198-237.Google Scholar
  320. van Loon, L. C. and van Kammen, A., 1970, Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’, II. Changes in protein constitution after infection with tobacco mosaic virus, Virology 40:199-211.CrossRefGoogle Scholar
  321. van Loon, L. C., and Pennings, G. G. H., 1993, Involvement of ethylene in the induction of systemic acquired resistance in tobacco, in: Mechanisms of Plant Defense Responses, B. Fritig, and Legrand, M., eds.,Kluwer Academic Publishers, Dordrecht, pp. 156-159.Google Scholar
  322. van Loon, L. C., and Van Strien, E. A., 1999, The familities of pathogenesis-related proteins, their activities,and comparative analysis of PR-1 type proteins, Physiol. Mol. Plant Pathol 55:85-97.CrossRefGoogle Scholar
  323. VanderMolen, G. E., Labavitch, J. M., Strand, L. L., and DeVay, J. E., 1983, Pathogen-induced vascular gels:Ethylene as a host intermediate, Physiol Plant 59:573-580.CrossRefGoogle Scholar
  324. Vanzyl, L. M., and Wingfield, M. J., 1998, Ethylene production by Eucalyptus clones in response to infection by hypovirulent and virulent isolates of Cryphonectria cubensis, South Africa J. Sci. 94:193-194.Google Scholar
  325. Vera, P., and Conejero, V., 1989a, The induction and accumulation of the pathogenesis-related P69 proteinase in tomato during citrus exocortis viroid infection and in response to chemical treatments, Physiol Mol.Plant Pathol 34:323-334.CrossRefGoogle Scholar
  326. Vera, P., and Conejero, V., 1989b, Effect of ethephon on protein degradation and the accumulation of pathogenesis-related (PR) proteins in tomato leaf discs, Plant Physiol 92:227-233.CrossRefGoogle Scholar
  327. Vera, P., Tornero, P., and Conejero, V., 1993, Cloning and expression analysis of a viroid-induced peroxidase from tomato plants, Mol. Plant Microbe Interact. 6:790-794.PubMedGoogle Scholar
  328. Vögeli, U., Meins, F., Jr. and Boiler, T., 1988, Coordinated regulation of chitinase and β-l,3-glucanase in bean leaves, Planta 174:364-372.CrossRefGoogle Scholar
  329. Völksch, B., and Weingart, H., 1997, Comparison of ethylene-producing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea, European J. Plant Pathol. 103:795-802.CrossRefGoogle Scholar
  330. Wächter, R., Fischer, K., Gabler, R., Kuhnemann, F., Urban, W., Bogemann, G. M., Voesenek, L. A. C. J.,Blom, C.W.P.M., and Ullrich, C. I., 1999, Ethylene production and ACC-accumulation in Agrobacterium tumefaciens-induccd plant tumours and their impact on tumour and host stem structure and function, Plant, Cell and Environ. 22:1263-1273.CrossRefGoogle Scholar
  331. Wargo, P. M., 1975, Lysis of the cell wall of Armillaria mellea by enzymes from forest trees, Physiol. Plant Pathol. 5:99-105.CrossRefGoogle Scholar
  332. Webb, S.T.J., Taylor, J. E., Coupe, S. A., Ferrarese, L., and Roberts, J. A., 1993, Purification of β-l,4-glucanase from ethylene treated leaflet abscission zones of Sambucus nigra, Plant, Cell and Environ. 16:329-333.CrossRefGoogle Scholar
  333. Weingart, H., and Volksch, B., 1997, Ethylene production by Pseudomonas syringae pathovars in vitro and in planta, Appl. Environ. Microbiol 63:156-161.PubMedGoogle Scholar
  334. Wendland, M., and Hoffman, G. M., 1988, Differenzierung der quantitative Resistenz von Weizensorten und-linien gegen Septoria nodorum auf der Grundlage der postinfectionellen Ethylenbildung, Z. Pflanzen.Pflanzenshutz. 95:113-123.Google Scholar
  335. Wiese, M. V., and DeVay, J. E., 1970, Growth regulator changes in cotton associated with defoliation caused by Verticillium albo-atrum, Plant Physiol 45:304-309.PubMedCrossRefGoogle Scholar
  336. Williamson, C. E., 1950, Ethylene, a metabolic product of diseased or injured plants, Phytopathol. 40:205-208.Google Scholar
  337. Woltering, E. J., 1987, Effects of ethylene on ornamental pot plants: A classification, Scientia Hortic. 31:283-294.CrossRefGoogle Scholar
  338. Yang, S. F., and Hoffman, N. E., 1984, Ethylene biosynthesis and its regulation in higher plants, Annu. Rev.Plant Physiol. 35:155-189.CrossRefGoogle Scholar
  339. Yang, S. F., and Pratt, H. K., 1978, The physiology of ethylene in wounded plant tissues, in: Biochemistry of Wounded Plant Tissues, G. Kahl, ed., Walter de Gruyter, Berlin, pp. 595-622.Google Scholar
  340. Yoshikawa, M., Yamaoka, N., and Takeuchi, Y., 1993, Elicitors: Their significance and primary modes of action in the induction of plant defense reactions Plant Cell Physiol. 34:1163-1173.Google Scholar
  341. Young, D. H., and Pegg, G. F., 1982, The action of tomato and Verticillium albo-atrum glycosidases on the hyphal wall of Verticillium albo-atrum, Physiol. Plant Pathol. 21:411-423.CrossRefGoogle Scholar
  342. Yu, L. M., 1995, Elicitins from Phytophthora and basic resistance in tobacco, Proc. Natl. Acad. Sci. USA 92:4088-4094.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Muhammad Arshad
    • 1
  • William T. FrankenbergerJr.
    • 2
  1. 1.University of AgricultureFaisalabadPakistan
  2. 2.University of CaliforniaRiversideCalifornia

Personalised recommendations