Skip to main content

Ethylene in Soil

  • Chapter
Ethylene

Abstract

The presence of ethylene (C2H4) in the soil atmosphere may be of great ecological significance because extremely low concentrations (ppb range) in the vicinity of roots could have a profound effect on growth and development of plants (Smith and Russell, 1969; Smith, 1976a; Primrose, 1979; Arshad and Frankenberger, 1988, 1990a„ 1992; Muromtsev et al., 1993, 1995; Bibik et al., 1995; Zahir and Arshad, 1998). Ethylene levels in soil atmosphere can be in the 10 μl L-1 and above range (Perret and Koblet, 1984; Meek et al., 1983; Dowdell et al., 1972; Campbell and Moreau, 1979; Smith and Dowdell, 1974) which are physiologically active levels of C2H4. The amounts of C2H4 in the soil atmosphere can vary greatly from soil to soil depending upon many biotic and abiotic factors (Goodlass and Smith, 1978a; Babiker and Pepper, 1984; Hunt et al, 1982; Arshad and Frankenberger, 1990b,c, 1991; Zechmeister-Boltenstern and Smith, 1998). The amount of C2H4 detected in soil represents a net balance of production minus decomposition implying that C2H4 production and decomposition take place simultaneously (Arshad and Frankenberger, 1990c; Zechmeister-Boltenstern and Smith, 1998; Nohrstedt, 1983; Hendrickson, 1989). In the following sections, C2H4 production, its stability and factors affecting its accumulation in soil will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abeles, F. B., and Heggestad, H. E., 1973, Ethylene: An urban air pollutant, J. Air Pollut. Control Assoc. 23:517-521.

    Article  PubMed  CAS  Google Scholar 

  • Abeles, F. B., Craker, L. E., Forrence, L. E., and Leather, G. R., 1971, Fate of air pollutants: Removal of ethylene, sulfur dioxide and nitrogen dioxide by soil, Science 173:914-916.

    Article  PubMed  CAS  Google Scholar 

  • Abeles, F. B., Morgan, P. W., and Saltveit, M. E., Jr., 1992, Ethylene in Plant Biology, 2nd Edition, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Adams, W. A., and Akhtar, N., 1994, The possible consequences for herbage growth of waterlogging compacted pasture soils, Plant Soil 162:1-17.

    Article  CAS  Google Scholar 

  • Armstrong, W., 1979, Aeration in higher plants, Adv. Botan. Res. 7:225-332.

    Article  CAS  Google Scholar 

  • Armstrong, W., Brandle, R., and Jackson, M. B., 1994, Mechanisms of flood tolerance in plants, Acta Botanica Neexlandica 43:307-358.

    CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1988, Influence of ethylene produced by soil microorganisms on etiolated pea seedlings, Appl. Environ. Microbiol. 54:2728-2732.

    PubMed  CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W.T., Jr., 1989, Biosynthesis of ethylene by Acremoniumfalciforme, Soil Biol. Biochem. 21:633-638.

    Article  CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1990a, Response of Zea mays L. and Lycopersicon esculentum to the ethylene precursors, L-methionine and L-ethionine, applied to soil, Plant Soil 122:219-227.

    Article  CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1990b, Ethylene accumulation in soil in response to organic amendments, Soil Sci. Soc. Am. J. 54:1026-1031.

    Article  CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1990c, Production and stability of ethylene in soil, Biol. Fert. Soils 10:29-34.

    CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1991, Effects of soil properties and trace elements on ethylene production in soils, Soil Sci. 151:377-386.

    Article  CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1992, Microbial biosynthesis of ethylene and its influence on plant growth, Adv. Microbiol. Ecol. 12:69-111.

    Article  CAS  Google Scholar 

  • Babiker, H. M., and Pepper, I. L., 1984, Microbial production of thylene in desert soils, Soil Biol. Biochem. 16:559-564.

    Article  CAS  Google Scholar 

  • Bibik, N. D., Letunova, S. V., Druchek, E. V., and Muromtsev. G. S., 1995, Effectiveness of a soil-acting ethylene producer in obtaining sanitized seed potatoes, Russ. Agricul. Sci. 9:19-21.

    Google Scholar 

  • Bleecker, A. B., Rose-John, S., and Kende, H., 1987, An evaluation of 2,5-norbornadiene as a reversible inhibitor of ethylene action in deepwater rice, Plant Physiol. 84:395-398.

    Article  PubMed  CAS  Google Scholar 

  • Blom, C. W. P. M., 1999, Adaptations to flooding stress: from plant community to molecule, Plant Biol. 1:261-273.

    Article  CAS  Google Scholar 

  • Blom, C. W. P. M, Bögermann, G. M., Laan, P., van der Sman, A. J. M, Van der Steeg, H. M., and Voeseneki, L. A. C. J., 1990, Adaptations to flooding in plants from river areas, Aquatic Bot. 38:29-47.

    Article  Google Scholar 

  • Bradford, K. J., and Yang, S. F., 1981, Physiological responses of plants to waterlogging, Hortic. Sci. 16:25-30.

    CAS  Google Scholar 

  • Burford, J. R., 1975, Ethylene in grassland soil treated with animal excreta, J. Environ. Qual. 4:55-57.

    Article  CAS  Google Scholar 

  • Campbell, R. B., and Moreau, R. A., 1979, Ethylene in a compacted field soil and its effect on growth, tuber quality and yield of potatoes, Am. Potato J. 56:199-210.

    Article  CAS  Google Scholar 

  • Chernys, J., and Kende, H., 1996, Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia, Planta 200:113-118.

    CAS  Google Scholar 

  • Conlin, T. S. S., and van den Driessche, R., 1996, Short-term effects of soil compaction on growth of Pinus contorta seedlings, Can. J. For. Res. 26:727-739.

    Article  Google Scholar 

  • Considine, P. J., Flynn, N., and Patching, J. W., 1977, Ethylene production by soil microorganisms. Appl. Environ. Microbiol. 33:977-979.

    PubMed  CAS  Google Scholar 

  • Cook. R. J., and Smith, A. M., 1977, Influence of water potential on production of ethylene in soil, Can. J.Microbiol. 23:811-817.

    Article  PubMed  CAS  Google Scholar 

  • Cookson, C, and Osborne, D. J., 1978, The stimulation of cell extension by ethylene and auxin in aquatic plants, Planta 144:39-47.

    Article  CAS  Google Scholar 

  • Cornforth, I. S., 1975, The persistence of ethylene in aerobic soils, Plant Soil 42:85-96.

    Article  CAS  Google Scholar 

  • Cowie, A. L., Jessop, R. S., and MacLeod, D. A., 1996, Effects of waterlogging on chickpeas. II. Possible causes of decreased tolerance of waterlogging at flowering, Plant Soil 183:105-115.

    Article  CAS  Google Scholar 

  • de Bont, J. A. M., 1976, Oxidatioin of ethylene by soil bacteria, Antonie van Leeuwenhoek 42:59-71.

    Article  PubMed  Google Scholar 

  • De heyder, B., Van Elst, T., Van Langgenhove, H., and Verstraete, W., 1997, Enhancement of ethene removal from waste gas by stimulating nitrification, Biodegradation 8:21-30.

    Article  Google Scholar 

  • Dowdell, R. J., Smith, K. A., Crees, R., and Restall, S. W. F., 1972, Field studies of ethylene in the soil atmosphere-equipment and preliminary results, Soil Biol. Biochem. 4:325-331.

    Article  CAS  Google Scholar 

  • Drew, M. C, 1991, Oxygen deficiency in the root environment and plant mineral nutrition, in: Plant Life under Oxygen Deprivation, M. B. Jackson et al., eds., Academic Publishing, The Hague, pp. 303-316.

    Google Scholar 

  • Drew, M. C., 1992, Soil aeration and plant root growth metabolism, Soil Sci. 154:259-268.

    Article  Google Scholar 

  • Drew, M. C, Jackson, M. C, and Giffard, S. C, 1979, Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive resonses to flooding in Zea mays L., Planta 147:83-88.

    Article  CAS  Google Scholar 

  • El-Beltagy, A. S., Madkour, M. A., and Hall, M. A., 1986, Uptake and movement of ethylene in tomatoes in relation to waterlogging, Acta Horticul. 190:355-370.

    Google Scholar 

  • Elsgaard, L., 1996, Ethylene degradation in peat-soil for horticultural practice, Abstract of the NATO Advanced Research Workshop on Biology and Biotechnology of the Plant Hormone Ethylene, 9-13 June, 1996. China, Greece, p. 97.

    Google Scholar 

  • Elsgaard, L., and Andersen, L., 1998, Microbial ethylene consumption in peat-soil during ethylene exposure of Begonia elatior, Plant Soil 202:231 -239.

    Article  CAS  Google Scholar 

  • El-Sharouny, H. M., 1984, Screening of ethylene producing root infecting fungi in Egyptian soil,Mycopathologia 85:13-15.

    Article  CAS  Google Scholar 

  • English, P. J., Lycett, G. W., Roberts, J. A., and Jackson, M. B., 1995, Increased 1-aminocyclopropane-l-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels, Plant Physiol. 109:1435-1440.

    PubMed  CAS  Google Scholar 

  • Frankenberger, W. T., Jr., and Arshad, M., 1995, Phytohormones in Soils: Microbial production and Functions, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Frankenberger, W. T., Jr., and Phelan, P. J., 1985a, Ethylene biosynthesis in soil. I. Method of assay in conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene, Soil Sci. Soc. Am. J. 49:1416-1422.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., Jr., and Phelan, P. J., 1985b, Ethylene biosynthesis in soil. II. Kinetics and thermodynamics in the conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene, Soil Sci. Soc. Am. J. 49:1422-1426.

    Article  CAS  Google Scholar 

  • Frye, R. J., Welsh, D., Berry, T. M., Stevenson, B. A., and McCallum, T., 1992, Removal of contaminant of organic gases from air in closed systems by soil, Soil Biol. Biochem. 24:607-612.

    Article  CAS  Google Scholar 

  • Goodlass, G., and Smith, K. A., 1978a, Effects of pH, organic matter content and nitrate on the evolution of ethylene from soils, Soil Biol. Biochem. 10:193-199.

    Article  CAS  Google Scholar 

  • Goodlass, G., and Smith, K. A., 1978b, Effects of organic amendments on evolution of ethylene and other hydrocarbons from soil, Soil Biol. Biochem. 10:201-205.

    Article  CAS  Google Scholar 

  • Harvey, R. G., and Linscott, J. J., 1978, Ethyelene production in soil containing quackgrass rhizomes and other plant materials, Soil Sci. Soc. Am. J. 42:721-724.

    Article  CAS  Google Scholar 

  • Hendrickson, O. Q., 1989, Implications of natural ethylene cycling processes for forest soil acetylene reduction assays, Can. J. Microbiol. 35:713-718.

    Article  CAS  Google Scholar 

  • Hodges, C. F., and Campbell, D. A., 1998, Gaseous hydrocarbons associated with black layer induced by the interaction of cyanobacteria and Desulfovibrio desulfuricans, Plant Soil 205:77-83.

    Article  CAS  Google Scholar 

  • Hommes, N. G., Russell, S. A., Bottomley, P. J., and Arp, D. J., 1998, Effects of soil on ammonia, ethylene,chloroethane, and 1,1,1-trichloroethane oxidation by Nitrosomonas europaea, Appl. Environ. Microbiol. 64:1372-1378.

    PubMed  CAS  Google Scholar 

  • Huang, B., Johnson, J. W., Box, J. E., and NeSmith, D. S., 1997, Root characteristics and hormone activity of wheat in response to hypoxia and ethylene, Crop Sci. 37:812-818.

    Article  CAS  Google Scholar 

  • Hunt, P. G., Campbell, R. B., and Moreau, R. A., 1980, Factors affecting ethylene accumulation in a Norfolk sandy loam soil, Soil Sci. 129:22-27.

    Article  CAS  Google Scholar 

  • Hunt, P. G., Campbell, R. B., Sojka, R. E., and Parsons, J. E., 1981, Flooding-induced soil and plant ethylene accumulation and water status response of field-grown tobacco, Plant Soil 59:427-439.

    Article  CAS  Google Scholar 

  • Hunt, P. G., Matheny, T. A., Campbell, R. B., and Parsons, J. E., 1982, Ethylene accumulation in southeastern coastal plain soils: Soil characteristics and oxidative-reductive involvement, Commun. Soil Sci. Plant - Anal. 13:267-278.

    Article  CAS  Google Scholar 

  • Hyodo, H., 1991, Stress/wound ethylene, in: The Plant Hormone Ethylene, A. K. Mattoo and J. C. Suttle, eds.,CRC Press, Inc., Boca Raton, FL, pp. 43-63.

    Google Scholar 

  • Ikeguchi, T., and Watanabe, I., 1991, Behavior of trace components in gases generated from municipal solid waste landfills, Environ. Technol. 12:947-952.

    Article  CAS  Google Scholar 

  • Ishii, T., and Kadoya, K., 1984a, Ethylene evolution from organic materials applied to soil and its relation to the growth of grapevines, J. Japan. Soc. Hort. Sci. 53:157-167.

    Article  Google Scholar 

  • Ishii, T., and Kadoya, K., 1984b, Growth of citrus trees as affected by ethylene evolved from organic materials applied to soil, J. Japan. Soc. Hort. Sci. 53:320-330.

    Article  CAS  Google Scholar 

  • Ishii, T., and Kadoya, K., 1987, Lipids as ethylene-releasing substances in the soil, Acta Hort. 201:69-76.

    Google Scholar 

  • Ishii, T., Hashimoto, A., and Kadoya, K., 1983, Effects of soil ethylene on the growth of fruit trees, IV.Ethylene-releasing substances in organic materials, Abstr. Japan Soc. Hort. Sci., Autumn Meeting, pp. 58-59.

    Google Scholar 

  • Jackson, M. B., 1982, Ethylene as a growth promoting hormone under flooded conditions, in: Plant Growth Substances, P. F. Wareing, ed.. Academic Press, London, pp. 291-301.

    Google Scholar 

  • Jackson, M. B., 1985., Ethylene and responses of plants to soil waterlogging and submergence, Annu. Rev. Plant Physiol. 36:145-174.

    Article  CAS  Google Scholar 

  • Jackson, M. B., and Campbell, D. J., 1975, Movement of ethylene from roots to shoots, a factor in the responses of tomato plants to waterlogged soil conditions, New Phytol 74:397-406.

    Article  CAS  Google Scholar 

  • Jackson, M. B., and Campbell, D. J., 1976, Waterlogging and petiole epinasty in tomato: The role of ethylene and low oxygen, New Phytol. 76:21-29.

    Article  CAS  Google Scholar 

  • Jackson, M. B., and Drew, M. C, 1984, Effects of flooding on growth and metabolism of herbaceous plants, in:Flooding and Plant Growth, 1. T. Kozlowski, ed.. Academic Press, New York, pp. 47-128.

    Google Scholar 

  • Jackson, M. B., and Pearce, D. M. E., 1991, Hormones and morphological adaptation to aeration stress in rice,in: Plant Life under Oxygen Deprivation, M. B. Jackson et al., eds.. Academic Publishing, The Hague, pp. 47-67.

    Google Scholar 

  • Jackson, M. B., Gales, K., and Campbell, D. J., 1978, Effect of waterlogged soil conditions on the production of ethylene and on water relationships in tomato plants, J. Exp. Bot. 29:183-193.

    Article  CAS  Google Scholar 

  • Jackson, M. B., Drew, M. C., and Giffard, S. C., 1981, Effects of applying ethylene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance, Physiol. Plant. 52:23-28.

    Article  CAS  Google Scholar 

  • Kapulnik, E., Quick, J., and DeVay, J. E., 1985. Germination of propagules of Verticillium dahliae in soil treated with methionine and other substances affecting ethylene production, Phytopathology 75:1348.

    Google Scholar 

  • Kawase, M., 1974. Role of ethylene in induction of flooding damage in sunflower, Physiol. Plant. 31:29-38.

    Article  CAS  Google Scholar 

  • Kawase, M., 1978, Anaerobic elevation of ethylene concentration in waterlogged plants, Am. J. Bot. 65:736-740.

    Article  CAS  Google Scholar 

  • Kozlowski, T. T., 1986, Soil aeration and growth of forest trees (review article), Scand. J. For. Res. 1:113-123.

    Article  Google Scholar 

  • Kuo, C. G., and Chen, B. W., 1980, Physiological responses of tomato cultivars to flooding, J. Am. Soc. Hort. Sci. 105:751-755.

    CAS  Google Scholar 

  • Lindberg, T., Granhall, U., and Berg, B., 1979, Ethylene formation in some coniferous forest soils, Soil Biol. Biochem. 11:637-643.

    Article  CAS  Google Scholar 

  • Lynch, J. M., 1972, Identification of substrates and isolation of microorganisms responsible for ethylene production in soil, Nature 240:45-46.

    Article  CAS  Google Scholar 

  • Lynch, J. M., 1975, Ethylene in soil. Nature 256:576-577.

    Article  CAS  Google Scholar 

  • Lynch, J. M., 1983, Effects of antibiotics on ethylene production by soil microorganisms, Plant Soil 70:415-420.

    Article  CAS  Google Scholar 

  • Lynch, J. M, and Harper, S. H. T., 1974a, Formation of ethylene by a soil fungus, J. Gen. Microbiol. 80:187-195.

    Article  Google Scholar 

  • Lynch, J. M., and Harper, S. H. T., 1974b, Fungal growth rate and the formation of ethylene in soil, J. Gen.M icrobiol. 85:91-96.

    CAS  Google Scholar 

  • Lynch, J. M., and Harper, S. H. T., 1980, Role of substrates and anoxia in the accumulation of soil ethylene, Soil Biol. Biochem. 12:363-367.

    Article  CAS  Google Scholar 

  • Meek, B. D., Ehling, C. F., Stolzy, L. H., and Graham, L. E., 1983, Furrow and trickle irrigation effects of soil oxygen and ethylene and tomato yield, Soil Sci. Soc. Am. J. 47:631-635.

    Article  CAS  Google Scholar 

  • Muromtsev, G. S., Karnenko, V. N., and Chernyaeva, I. I., 1988, Ethylene producing regulators of growth in plants, Inventor’s Certificate No. 1372649555R, Byull. Izobret., No. 5.

    Google Scholar 

  • Muromtsev, G. S., Letunova, S. V., Beresh, I. G., and Alekseeva, S. A., 1990, Soil ethylene as a plant growth regualtor and ways to intensify its formation in soil, Biol. Bull. Acad. Sci. USSR 16:455-461.

    Google Scholar 

  • Muromtsev, G. S., Krasinskaya, N. P., Letunova, S. V., and Beresh, I. G., 1991, Use of ethylene producing soil-acting preparation on citrus crops, Soviet Agricul Sci. 2:24-26.

    Google Scholar 

  • Muromtsev, G. S., Letunova, S. V., Rentovich, L. N., Timpanova, Z. L., Gorbatenko, I. Y., Shapoval, O. A.,Bibik, N. D., Stepanov, G. S., and Druchek, Y. V., 1993, Retprol-New ethylene-releasing preparation of soil activity, Russ. Agricul. Sci. 7:19-26.

    Google Scholar 

  • Muromtsev, G. S., Shapoval, O. A., Letunova, S. V., and Druchek, Y. V., 1995, Efficiency of new ethylene producing soil preparation Retprol on cucumber plants, Selskokh. Biologia. 5:64-68.

    Google Scholar 

  • Musgrave, A., Jackson, M. B., and Ling, E., 1972, Callitriche stem elongation is controlled by ethylene and gibberellin, Nature New Biol. 238:93-96.

    Article  Google Scholar 

  • Nakano, R., and Kuwatsuka, S., 1979, Studies on formation and degradation of ethylene in flooded soils, IV. Ethylene and methane formation in soil incubated with plant materials, J. Soc. Soil Manure, Japan 50:61-66.

    CAS  Google Scholar 

  • Nakayama, M., and Ota, Y., 1980, Physiological action of ethylene in crop plants. V. Effects of water and compost on the ethylene production from soil, Japan. J. Crop Sci. 49:359-365.

    Article  CAS  Google Scholar 

  • Nikitin, D. I., and Arakelyan, R. N., 1979, Utilization of ethylene by soil bacteria, Biol. Bull. Acad. Sci. USSR 6:671-673.

    Google Scholar 

  • Nohrstedt, H.-Ȕ., 1983, Natural formation of ethyhlene in forest soils and methods to correct results given by the acetylene-reduction assay, Soil Biol. Biochem. 15:281-286.

    Article  CAS  Google Scholar 

  • Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A., and Stange, L. M. C, 1996, Evidence for a non-ACC ethylene biosynthesis pathway in lower plants, Phytochem. 42:51-60.

    Article  CAS  Google Scholar 

  • Otani, T., and Ae, N., 1993, Ethylene and carbon dioxide concentrations of soils as influenced by rhizosphere of crops under field and pot conditions, Plant Soil 150:255-262.

    Article  CAS  Google Scholar 

  • Pazout, J., Wurst, M., and Vancura, V., 1981, Effect of aeration on ethylene production by soil bacteria and soil samples cultivated in a closed system, Plant Soil 62:431 -437.

    Article  CAS  Google Scholar 

  • Perret, P., and Koblet, W., 1984, Soil compaction induced iron-chlorosis in grape vineyards: Presumed involvement of exogenous soil ethylene, J. Plant Nutrition 7:533-539.

    Article  CAS  Google Scholar 

  • Pimenta, J. A., Orsi, M. M., and Medri, M. E., 1994, Morphological and physiological aspects of Coleus blumei Benth. under waterlogged conditions and after application of ethrel and cobalt, Rev. Barsil. Biol. 53:427-433.

    Google Scholar 

  • Primrose, S. B., 1976, Ethylene-forming bacteria from soil and water, J. Gen. Microbiol. 97:343-346.

    Article  PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1979, A review, ethylene and agriculture: The role of microbes, J. Appl. Bacteriol. 46:1-25.

    Article  CAS  Google Scholar 

  • Rigler, E., and Zechmeister-Boltenstern, S., 1996, Einflub von C02 and stickstoff auf den microbiellen. Abbau von Methane und ethylene, mitteilungen der Deutschen, Bodenkundichen Gesellschaft 71:205-208.

    Google Scholar 

  • Rigler, E., and Zechmeister-Boltenstern, S., 1998, Influence of nitrogen and carbon dioxide on ethylene and methane production in two different soils, Microbiol. Res. 153:227-237.

    Article  CAS  Google Scholar 

  • Rigler, E., and Zechmeister-Boltenstern, S., 1999, Oxidation of ethylene and methane in forest soils - effect of C02 and mineral nitrogen, Geoderma 90:147-159.

    Article  CAS  Google Scholar 

  • Rovira, A. D., and Vendrell, M., 1972, Ethylene in sterilized soil. Its significance in studies of interactions between microorganisms and plants, Soil Biol. Biochem. 4:63-69.

    Article  CAS  Google Scholar 

  • Sawada, S., Nakahata, K., and Totsuka, T., 1985, Fundamental studies on dynamics of ethylene in an ecosystem. III. Degradation capacity of atmospheric ethylene in soils taken from various vegetations, Japanese J. Ecol. 35:453-459.

    CAS  Google Scholar 

  • Sexstone, A. J., and Mains, C. N., 1990, Production of methane and ethylene in organic horizons of spruce forest soils, Soil Biol. Biochem. 22:135-139.

    Article  CAS  Google Scholar 

  • Smith, A. M., 1973, Ethylene as a cause of soil fungistasis, Nature 246:311-313.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. M., 1975, Ethylene as a critical regulator of microbial activity in soil, Proc. First Intersect. Congr. Int. Assoc. Microbiol. Soc. Tokyo 2:463-473.

    Google Scholar 

  • Smith, A. M., 1976a, Ethylene in soil biology, Annu. Rev. Phytopathol. 14:53-73.

    Article  CAS  Google Scholar 

  • Smith, A. M., 1976b, Ethylene production by bacteria in reduced microsites in soil and some implications to agriculture, Soil Biol. Biochem. 8:293-298.

    Article  CAS  Google Scholar 

  • Smith, A. M., and Cook, R. J., 1974, Implications of ethylene production by bacteria for biological balance of soil, Nature 252:703-705.

    Article  CAS  Google Scholar 

  • Smith, A. M, Milham, P. J., and Morrison, W. L., 1978, Plant diseases: Soil ethylene production specifically triggered by ferrous iron, in: Microbial Ecology, M. W. Loutit and J. A. R. Miles, eds., Springer-Verlag, New York, NY, pp. 329-336.

    Google Scholar 

  • Smith, K. A., and Dowdell, R. J., 1974, Field studies of the soil atmosphere. I. Relationship between ethylene, oxygen, soil moisture content and temperature, J. Soil Sci. 25:217-230.

    Article  CAS  Google Scholar 

  • Smith, K. A., and Restall, S. W. F., 1971, The occurrence of ethylene in anaerobic soil, J. Soil Sci. 22:430-443.

    Article  CAS  Google Scholar 

  • Smith, K. A., and Russell, R. S., 1969, Occurrence of ethylene and its significance in anaerobic soil, Nature 222:769-771.

    Article  CAS  Google Scholar 

  • Smith, K. A., Bremner, J. M., and Tabatabai, M. A., 1973, Sorption of gaseous atmospheric pollutants by soils, Soil Sci. 116:313-319.

    Article  CAS  Google Scholar 

  • Sutherland, J. B., and Cook, R. J., 1980, Effects of chemical and heat treatments on ethylene production in soil, Soil Biol. Biochem. 12:357-362.

    Article  CAS  Google Scholar 

  • Syslo, S. K., Myhre, D. L., and Biggs, R. H., 1990, Differences in ethylene production among three horizons of a Florida Spodosol, Soil Sci. Soc. Am. J. 54:432-438.

    Article  CAS  Google Scholar 

  • Tang, T., and Miller, D. M., 1993, Ethylene production in anaerobically incubated soils amended with poultry litter, Soil Sci. 156:186-192.

    Article  CAS  Google Scholar 

  • van Cleemput, O., El-Sebaay, A. S., and Baert, L., 1983, Evolution of gaseous hydrocarbons from soil, effect of moisture content and nitrate level. Soil Biol. Biochem. 15:519-524.

    Article  Google Scholar 

  • Visser, E. J. W., Nabben, R. H. M., Blom, C. W. P., and Voesenek, L. A. C. J., 1997, Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations, Plant, Cell Environ. 20:647-653.

    Article  CAS  Google Scholar 

  • Visser, E. J. W., Bögenman, G. M., Blom, C. W. P. M., and Voesenek, L. A. C. J., 1996a, Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots, J. Exptl Bot. 47:403-410.

    Article  CAS  Google Scholar 

  • Visser, E. J. W., Cohen, J. D., Barendse, G. W. M., Blom, C. W. P. M., and Voesenek, L. A. C. J., 1996b, An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm., Plant Physiol. 112:1687-1692.

    PubMed  CAS  Google Scholar 

  • Voesenek, L. A. C. J., and Blom, C. W. P. M., 1989, Growth responses of Rumex species in relation to submergence and ethylene, Plant, Cell Environ. 12:433-439.

    Article  CAS  Google Scholar 

  • Voesenek, L. A. C. J., van der Sman, A. J. M., Harren, F. J. M., and Blom, C. W. P. M., 1992, An amalgamation between hormone physiology and plant ecology: A review on flooding resistance and ethylene, J. Plant Growth Regul 11:171-188.

    Article  CAS  Google Scholar 

  • Wainwright, M., and Kowalenko, C. G., 1977, Effects of pesticides, lime and other amendments on soil ethylene, Plant Soil 48:253-258.

    Article  CAS  Google Scholar 

  • Yamamoto, F., 1992, Effects of depth of flooding on growth and anatomy of stems and knee roots of Taxodium distichum, IAWA Bull. 13:93-104.

    Google Scholar 

  • Yamamoto, F., and Kozlowski, T. T., 1985, Effects of flooding, tilting of stem and ethrel application on growth,stem anatomy, and ethylene production of Acer platanoides, Scand. J. Forest Res. 2:141-156.

    Article  Google Scholar 

  • Yoshida, T., and Suzuki, T., 1975, Formation and degradation of ethylene in submerged rice soils, Soil Sci.Plant. Nutr. (Tokyo) 21:129-135.

    Article  CAS  Google Scholar 

  • Zahir, Z. A., and Arshad, M., 1998, Response of Brassica carinata and Lens culinaris to ethylene precursors Lmethionine and 1-aminocyclopropane-l-carboxylic acid, Soil Biol. Biochem. 30:2185-2188.

    CAS  Google Scholar 

  • Zainol, E., Lal, R., Vantoai, T., and Fausey, N., 1991, Soil compaction and water table effects on soil aeration and corn growth in a greenhouse study, Soil Technol. 4:329-342.

    Article  Google Scholar 

  • Zechmeister-Boltenstern, S., and Nikodim, L., 1999, Effect of water tension on ethylene production and consumption in montane and lowland soils in Austria, European J. Soil Sci. 50:425-432.

    Article  CAS  Google Scholar 

  • Zechmeister-Boltenstern, S., and Smith, K. A., 1998, Ethylene production and decomposition in soils, Biol.Fertil. Soils 26:354-361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arshad, M., Frankenberger, W.T. (2002). Ethylene in Soil. In: Ethylene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0675-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0675-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5189-4

  • Online ISBN: 978-1-4615-0675-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics