Effects of Inbreeding and Social Status on Individual Recognition in Mice

  • Charlotte M. Nevison
  • Christopher J. Barnard
  • Robert J. Beynon
  • Jane L. Hurst


Individual recognition modulates social behaviour between conspecifics, enabling an animal to assess its familiarity and kinship with other individuals (Barnard et al., 1991; Barnard and Aldhous, 1991). Wild mice identify each other through individually unique urinary odour cues that are determined, at least in part, by genetic differences (Eggert et al., 1996). By depositing these unique odour cues as scent marks, mice provide signals of their presence and social status (see Hurst et. al., this volume). Dominant males deposit scent marks at high frequency as a sign of their competitive quality and current territorial ownership, and increase their rate of scent marking where they encounter competing scent marks from other males in their territory. Countermarking of scent marks from other males by dominant males thus provides a specific test that the mice have recognised scent marks as being derived from another individual.


Inbred Strain House Mouse Dominant Male Scent Mark Individual Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apps, P. J., Rasa, A., and Viljoen, H. W., 1988, Quantitative chromatographic profiling of odours associated with dominance in male laboratory mice.Aggr. Behav. 4:451–461.CrossRefGoogle Scholar
  2. Barnard, C. J., and Aldhous, P., 1991, Kinship, kin discrimination and mate choice, in:Kin recognition, (P. G. Hepper, ed.), Cambridge University Press, Cambridge.Google Scholar
  3. Barnard, C. J., Hurst, J. L., and Aldhous, P., 1991, Of mice and kin: the functional significance of kin bias in social behaviour.Biol. Rev. 66:379–430.PubMedCrossRefGoogle Scholar
  4. Benson, T. E., Ryugo, D. K., and Hinds, J. W., 1984, Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis.J. Neurosci. 4:638–653.Google Scholar
  5. Boyse, E. A., Beauchamp, G. K., Yamazaki, K., and Bard, J., 1991, Genetic components of kin recognition in mammals. In:Kin Recognition(P. G. Hepper, ed.), pp. 148–161. Cambridge University Press.Google Scholar
  6. Brown, R. E., 1995, What is the role of the immune-system in determining individually distinct body odors?Int. J. Immunopharm..17:655–661.CrossRefGoogle Scholar
  7. Desjardins, C., Maruniak, J. A., and Bronson, F. H., 1973, Social rank in the house mouse: differentiation revealed by ultra-violet visualisation of urinary marking patterns.Science 182:939–941.PubMedCrossRefGoogle Scholar
  8. Eggert, F., Höller, C., Luszyk, D., Müller-Ruchholtz, W., and Ferstl, R., 1996, MHC-associated and MHC-independent urinary chemosignals in mice.Physiol. Behav. 59:57–62.PubMedCrossRefGoogle Scholar
  9. Gosling, L. M., and McKay, H. V., 1990, Competitor assessment by scent-matching: an experimental test.Behav. Ecol. Sociobiol. 26:415–420.CrossRefGoogle Scholar
  10. Harvey, S., Jemiolo, B., and Novotny, M., 1989, Pattern of volatile components in dominant and subordinate male mouse urine.J. Chem. Ecol. 15:2061–2072.CrossRefGoogle Scholar
  11. Humphries, R. E., Robertson, D. H. L., Beynon, R. J., and Hurst, J. L., 1999, Unravelling the chemical basis of competitive scent marking.Anim. Behav. 37:705–725.Google Scholar
  12. Hurst, J. L., 1990, Urine marking in populations of wild house miceMus domesticusRutty I. Communication between males.Anim. Behav. 45:55–81.CrossRefGoogle Scholar
  13. Hurst, J. L., 1993, The priming effects of urine substrate marks on interactions between male house mice,Mus musculus domesticusSchwarz and Schwarz.Anim. Behav. 45:55–81.CrossRefGoogle Scholar
  14. Hurst, J. L., Fang, J. M., and Barnard, C. J., 1993, The role of substrate odours in maintaining social tolerance between male house mice,Mus musculus domesticus.Anim. Behav. 45:997–1006.CrossRefGoogle Scholar
  15. Jennings, M., Batchelor, G. R., Brain, P. F., Dick, A., Elliott, H., Francis, R. J., Hubrecht, R. C., Hurst, J. L., Morton, D. B., Peters, A. G., Raymond, R., Sales, G. D., Sherwin, C. M., West, C, 1998, Refinements in rodent husbandry: the mouse.Lab. Anim. 32:233–259.PubMedCrossRefGoogle Scholar
  16. Jones, R.B., and Nowell, N.W., 1989, Aversive potency of urine from dominant and subordinate male laboratory mice (Mus musculus): resolution of a conflict.Aggr. Behav. 15:291–296.CrossRefGoogle Scholar
  17. Koolhaas, J. M., 1999, The laboratory rat. In:The UFAW Handbook on the Care and Management of Laboratory Animals(T. B. Poole, ed.), Oxford: Blackwell Science, pp.313–330.Google Scholar
  18. Nevison, C. M., Barnard, C. J., Beynon, R. J., and Hurst, J. L., 2000, The consequences of inbreeding for recognizing competitors.Proc. R.. Soc. Lond. B. 267:687–694.CrossRefGoogle Scholar
  19. Novotny, M., Harvey, S., and Jemiolo, B., 1990, Chemistry of male dominance in the house mouseMus domesticus.Experientia, 46:109–113.PubMedCrossRefGoogle Scholar
  20. Rich, T. J., and Hurst, J. L., 1999, The competing countermarks hypothesis: reliable assessment of competitive ability by potential mates.Anim. Behav. 88:1027–1037.CrossRefGoogle Scholar
  21. Schellinck, H. M., West, A. M., and Brown, R. E., 1992, Rats can discriminate between the urine odors of genetically identical mice maintained on different diets.Physiol. Behav. 51:1079–1082.PubMedCrossRefGoogle Scholar
  22. Yamaguchi, M., Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A., 1981, Distinctive urinary odours governed by the major histocompatability locus of the mouse.Proc. Natl. Acad. Sci. USA 78:5817–5820.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Charlotte M. Nevison
    • 1
  • Christopher J. Barnard
    • 3
  • Robert J. Beynon
    • 2
  • Jane L. Hurst
    • 1
  1. 1.Animal Behaviour Group, Faculty of Veterinary ScienceUniversity of LiverpoolLeahurst, NestonUK
  2. 2.Protein Function Group, Faculty of Veterinary ScienceUniversity of LiverpoolLeahurst, NestonUK
  3. 3.School of BiologyUniversity of NottinghamNottinghamUK

Personalised recommendations