Skip to main content

Elevation of Glutathione Levels by Coffee Components and Its Potential Mechanisms

  • Chapter
Biological Reactive Intermediates VI

Abstract

The tripeptide glutathione (L-γ-glutamyl-L-cysteinylglycine) is found ubiquitous in microorganisms, plants and animals. In mammalian cells, where the tripeptide fulfils numerous functions, concentrations range from 0.5 to 10 mM (Meister & Tate, 1976; Meister, 1984; Redegeld et al., 1990). Glutahione is involved, for example, in the synthesis of proteins and DNA, in the regulation of enzyme activity, in the transport and reservoir of amino acids. A very important function of glutathione is the protection of cells, for instance as an antioxidant or as a co-factor in the conjugation of xenobiotics (Meister & Anderson, 1983; Redegeld et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyne, A. F., and Ellmann, G. L., 1972, A methodology for analysis of tissue sulfhydryl components, Analytical Biochemistry 46(2): 639.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M., 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72: 248.

    Article  PubMed  CAS  Google Scholar 

  • Cavin, C., Holzhäuser, D., Constable, A., Huggett, A. C., and Schilter, B., 1998, The coffee-specific diterpenes cafestol and kahweol protect against aflatoxin B1-induced genotoxicity through a dual mechanism, Carcinogenesis 19(8): 1369.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, D. L. and Hamel, D. M., 1994, Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione, Toxicology and Applied Pharmacology 126: 145.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O. W., Anderson, M. E., and Meister, A., 1979, Inhibition of glutathione biosynthesis by prothionine sulfoximine, a selective inhibitor ofγ-glutamylcysteine synthetase, The Journal of Biological Chemistry 254(4): 1205.

    PubMed  CAS  Google Scholar 

  • Griffith, O. W., 1982, Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione, The Journal of Biological Chemistry 257(22): 13704.

    PubMed  CAS  Google Scholar 

  • Huber, W., McDaniel, L. P., Kaderlik, K. R., Teitel, C. H., Lang, N. P., and Kadlubar, F. F.,1997, Chemoprotection against the formation of colon DANN adducts from the food-borne carcinogen 2-amino- 1-methyl-6-phenylimidazo[4,5-b]pyridine in the rat, Mutation Research 376: 115.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.-S., Moore, W. R., and Meister, A., 1988, On the active site thiol of γ-glutamylcysteine synthetase: Relationships to catalysis, inhibition, and regulation, Processings of the National Academy of. Science. 85: 2464.

    Article  CAS  Google Scholar 

  • Lebo, R. V. and Kredlich, N. M., 1978, Inactivation of human gamma-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme-ligand complexes, Journal of Biological Chemistry 253: 2615.

    PubMed  CAS  Google Scholar 

  • Lieners, C., Redl, H., Molnar, H., Furst, W., Hallstrom, S., and Schlag, G., 1989, Lipidperoxidation in a canine model of hypovolemic-traumatic shock, Progressions in Clinical and Biological Research 308: 345–50.

    CAS  Google Scholar 

  • Liu, R.-M., Hu, H., Robison, T. W., and Forman, H. J., 1996, Increased γ-glutamylcysteine synthetase and γ-glutamyl transpeptidase activities enhance resitance of rat lung epithelial L2 cells to quinone toxicity, American Journal of Respiratory Cell Molecular Biology 14: 192.

    CAS  Google Scholar 

  • Meister, A. and Tate, S. S., 1976, Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization, Annual Review of Biochemistry 45: 559.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. and Anderson, M. E., 1983, Glutathione Annual Reviews in Biochemistry 52: 711.

    Article  CAS  Google Scholar 

  • Meister, A., 1984, New aspects of glutathione biochemistry and tranport: selective alteration of glutathione metabolism, Federation Proceedings 43(15): 3031.

    PubMed  CAS  Google Scholar 

  • Meister, A, 1985, Glutathione synthetase from rat kidney, Methods in Enzymology 113: 393.

    Article  PubMed  CAS  Google Scholar 

  • Moellering, D., McAndrew, J., Patel, R. P., Cornwell, T., Lincoln, T., Cao, K., Messina, J.L., Forman, H. J., Jo, H., and Darleγ-Usmar, V. M., 1998, Nitric oxide-dependent induction of glutathione synthesis through increased expression of γ-glutamylcysteine synthetase, Archives of Biochemistry and Biophysics 358(1): 74.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W., Wiener, H. L., and Meister, A., 1987, Inactivation of gamma-glutamylcysteine synthetase, but not of glutamine synthetase, by S-sulfocysteine and S-sulfohomocysteine, The Journal of Biological Chemistry 262(35): 16771.

    PubMed  CAS  Google Scholar 

  • Nardi, G. and Cipollaro, M, 1990, Assay of γ-Glutamylcysteine synthetase and glutathione synthetase in erythrocytes by high-performance liquid chromatography in fluorimetric detection, Journal of Chromatography 530: 122.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, L., Wellner, V. P., Griffith, O. W., and Meister, A., 1979, Glutathione synthetase, The Journal of Biological Chemistry 254(12):5184.

    PubMed  CAS  Google Scholar 

  • Ochi, T. (1995) Hydrogen peroxide increases the activity of γ-Glutamylcysteine synthetase in cultured chinese hamster V79 cells, Archives of Toxicology 70: 96.

    Article  PubMed  CAS  Google Scholar 

  • Redegeld, F. A. M., Koster, A. S., van Bennekom, W. P., 1990, Determination of tissue Glutathione. in: Glutathione: Metabolism and Physiological Functions. J. Vina ed., CRC Press, Boca Raton.

    Google Scholar 

  • Richman, P. G., Orlowski, M., and Meister, A., 1973, Inhibition of gamma-glutamylcysteine synthetase by L-methionine-S-sulfoximine The Journal of Biological Chemistry 248: 6684.

    PubMed  CAS  Google Scholar 

  • Richman, P. G. and Meister, A., 1975, Regulation of γ-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione, The Journal of Biological Chemistry 250(49): 1422.

    PubMed  CAS  Google Scholar 

  • Romero, F. J. and Galaris, D., 1990, Compartmentation of cellular glutathione in mitochondrial and cytosoloic pools. in: Glutathione: Metabolism and Physiological Functions. J. Vina ed., CRC Press, Boca Raton.

    Google Scholar 

  • Sacchetta, P., Di Cola, D., and Federici, G., Alkaline hydrolysis of N-ethylmaleimide allows a rapid assay of glutathione disulfide in biological samples, Analytical Biochemistry 154(1):205.

    Google Scholar 

  • Shi, M. M., Kugelman, A., Iwamoto, T., Tian, L., and Forman, H. J., 1994, Quinone-induced oxidative stress elevates glutathione and induces γ-glutamylcysteine synthetase activity in rat lung epithelial L2 cells, The Journal of Biological Chemistry 269(42): 26512.

    PubMed  CAS  Google Scholar 

  • Tian, L., Shi, M. M., and Forman, H. J., 1997, Increased transcription of the regulatory subunit of γ-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress of glutathione depletion Archives of Biochemistry and Biophysics 342(1): 126.

    Article  PubMed  CAS  Google Scholar 

  • Turesky, R. J., Lang, N. P., Butler, M. A., Teitel, C. H., and Kadlubar, F. F., Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon, Carcinogenesis 12(10): 1839.

    Google Scholar 

  • Woods, J. S., Davis, H. A., and Baer, R. P., 1992, Enhancement of γ-glutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Archives of Biochemistry and Biophysics 296(1): 350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scharf, G., Prustomersky, S., Huber, W.W. (2001). Elevation of Glutathione Levels by Coffee Components and Its Potential Mechanisms. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_82

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_82

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics