Skip to main content

Are Dopamine, Norepinephrine, and Serotonin Precursors of Biologically Reactive Intermediates Involved in the Pathogenesis of Neurodegenerative Brain Disorders?

  • Chapter
Biological Reactive Intermediates VI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 500))

Abstract

During the past two or three decades an immense amount of research has been carried out to understand the fundamental molecular mechanisms that underlie the neurotoxicity evoked by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), methamphetamine (MA) and related amphetamine drugs of abuse. The neurotoxicity of MPTP is of particular interest because it not only mimics the symptoms and major pathobiochemical changes that occur in Parkinson’s disease (PD) but also arguably provides the best model of PD in animals (Gerlach et al.,1991; Gerlach and Riederer, 1996; Royland and Langston, 1998). Interest in the neurotoxicity evoked by MA derives not only from the fact that this compound is a widely abused psychoactive drug but in animals it also mimics many of the major pathobiochemical changes that occur in PD (Gerlach and Riederer, 1996) although it is a less selective neurotoxin than MPTP. Transient cerebral ischemia, or ischemia-reperfusion (I-R), can also lead to neurodegeneration although this is even less selective than MA. Nevertheless, there are a rather striking number of similar factors that appear to be key steps in a complex cascade of processes that compromise the neurotoxic mechanisms evoked by MPTP, MA and I-R. In this communication similarities associated with the neurotoxicity evoked by MPTP, MA and I-R will be briefly reviewed. Subsequently, these will be integrated into a working hypothesis for the underlying neurotoxic mechanisms in which one or more of the neurotransmitters dopamine (DA), norepinephrine (NE) and 5-hydroxytryptamine (5-HT; serotonin) are proposed to be the precursors of biologically reactive intermediates in the pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, D.S., Zeevalk, G.D., and Sonsalla, P.K., 1996, Damage to dopaminergic nerve terminals in mice by combined treatment of intrastriatal malonate with systemic methampehtamine or MPTP. Brain Res. 718: 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Ali, S.F., and Itzhak, Y., 1998, Effects of 7-nitroindazole, an nNOS inhibitor, on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice. Ann. N.Y. Acad. Sci. 844: 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Andén, N.-E., Fuxe, B., Hamberger, B. and Hökfelt, T., 1966, A quantitative study on the nigro-neostriatal dopamine neuron system in the rat. Acta Physiol. Scand. 67: 306–312.

    Article  PubMed  Google Scholar 

  • Ara, J., Przedborski, S., Naini, A.B., Jackson-Lewis, V., Trifiletti, R.R., Horwitz, J., and Ischiropoulos, H. 1998, Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Nat. Acad. Sci. U.S.A. 95: 7659–7663.

    Article  CAS  Google Scholar 

  • Axt, K.J., and Molliver, M.E., 1991, Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse 9: 302–313.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., 1995 Mitochondrial Dysfunction and Oxidative Damage in Neurodegenerative Diseases R.G. Landes Co., Austin, TX.

    Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N., 1984, Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43: 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Berger, U.V., Gu, X.F., and Azmitia, E.C., 1992, The substituted amphetamines 3,4methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5hydroxytrytpamine release via a common mechanism blocked by fluoxetine and cocaine. Eur. J. Pharmacol. 215: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Berman, S.B., and Hastings, T.G., 1999, Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73: 1127–1137.

    Article  PubMed  CAS  Google Scholar 

  • Bezard, E. Gross, C.E., Fournier, M.C., Dovero, S., Bloch, B., and Jaber, M., 1999, Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol. 155: 268–273.

    Article  PubMed  CAS  Google Scholar 

  • Blass, J.P., Sheu, R.K., and Gibson, G.E., 2000, Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann. N.Y. Acad. Sci. 903: 204–221.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, K.B., Gudelsky, G., Yamamoto, B.K., 2000, Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur. J. Pharmacol. 398: 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Cadet, J.L., Sheng, P., Ali, S., Rothman, R., Carlson, E., and Epstein, C., 1994, Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismustase transgenic mice. J. Neurochem. 62: 380–383.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, B. Yuan, J., Stover, G., Hatzidimitriou, G., and Ricaurte, G., 1998, Effects of 2-deoxy-D-glucose on methamphetamine-induced dopamine and serotonin neurotoxicity. J. Neurochem. 70: 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Cao, C.J., Eldefrawi, A.T., and Eldefrawi, M.E., 1990, ATP-regulated neuronal catecholamine uptake: a new mechanism. Life Sci. 47: 655–667.

    Article  PubMed  CAS  Google Scholar 

  • Carboni, S., Melis, F., Pani L. Hadjiconstantinou, M., and Rossetti, Z.L., 1990, The non-competitive NMDA receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-phenylpyridinium (MPP+). Neurosci. lett. 117:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Cebers, G., Cebere, A., and Liljequist, S., 1998, Metabolic inhibition potentiates AMPA-induced Ca2+ fluxes and neurotoxicity in rat cerebellar granule cells. Brain Res. 779: 194–204.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P., Delanney, L.E., Irwin, I., Langston, J.W., and Di Monte, D., 1991, Rapid ATP loss caused by MPTP in mouse brain. J. Neurochem 57:348–351.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P., Di Monte, D.A., Luo, J.-J., Delanney, L.E., Irwin, I. and Langston, J.W., 1994, Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J. Neurochem. 62: 2484–2487.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh, C.C., and Huang, S.J., 1991, MPP+ enhances potassium evoked striatal dopamine release through an 0-conotoxin-insensitive, tetrodotoxin-and nimodipine-sensitive calcium dependent mechanism. Ann. N.Y. Acad. Sci. 635: 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh, C.C., Wu, R.-M., Mohanakumar, K.P., Sternberger, L.M., Krishna, G., Obata, T., and Murphy, D.L., 1994, In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann. N.Y. Acad. Sci. 738:25–36.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, J.A., and Phebus, L.A., 1988, Dopamine depletion protects striatal neurons from ischemia-induced cell death. Life Sci. 42: 707–713.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A.J.L., 1998, Role of astrocytes in maintaining cerebral glutathione homeostasis and in protecting the brain against xenobiotics and oxidative stress, in Glutathione in the Nervous System (C.A. Shaw, Ed.), Taylor and Francis, Washington, D.C., pp. 91–115.

    Google Scholar 

  • Cooper, J.M., and Schapira, A.H.V., 1997, Mitochondrial dysfunction in neurodegeneration. J. Bioenerg. Biomembr. 29: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A.J.L., Pulsinelli, W.A., and Duffy, T.E., 1980, Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J. Neurochem. 35 1242–1245.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.-C., Crino, P.B., To, A.C.S., and Volicer, L., 1989, Increased serotonin efflux by a partially oxidized serotonin: tryptamine-4,5-dione. J. Pharmacol. Exp. Therap. 250: 141–148.

    CAS  Google Scholar 

  • Corrigan, F.M., Wienberg, C.L., Shore, R.F., Daniel, S.E., and Mann, D., 2000, Organochlorine insecticides in substantia nigra in Parkinson’s disease. J. Toxicol. Environ. Health 59: 229–234.

    Article  CAS  Google Scholar 

  • Crino, P.B. Vogt, B.A., Chen, J.-C., and Volicer, L., 1989, Neurotoxic effects of partially oxidized serotonin: tryptamine-4,5-dione. Brain Res. 504: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C.D., Radi, R., Koppenol, W.H., and Beckman, J.S., 1994, On the pH-dependent yield of hydroxyl radical products from peroxynitrite. Free Rad. Biol. Med. 16: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Della Donne, K.T., and Sonsalla, P.K., 1994, Protection against methamphetamine-induced neurotoxicity to neostriatal dopamine neurons by adenosine receptor activation. J. Pharmacol. Exp. Therap. 271: 1320–1326.

    Google Scholar 

  • Dexter, D.T., Sian, J., Rose, H. Hindmarsh, J.-G., Mann, V.M., Cooper, J.M., Wells, F.R., Daniel, S.E., Lees, A.J., Schapira, A.H.V., Jenner, P., and Marsden, C.D., 1994, Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann. Neurol. 35: 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Dorrepaal, C.A., van Bel, F., Moison, R.M., Shadid, M., van de Bor, M., Steedijk, P., and Berger, H.M., 1997, Oxidative stress during post-hypoxic-ischemia reperfusion in the newborn lamb: the effect of nitric oxide synthesis inhibition. Pediatr. Res. 41: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Dringen, R., Pfeiffer, B. and Hamprecht, B. 1999, Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CsyGly as precursor for neuronal glutathione. J. Neurosci. 19: 562–569.

    PubMed  CAS  Google Scholar 

  • Edwards, R.H., 1993, Neural degeneration and the transport of neurotransmitters. Ann. Neurol. 34: 638–645.

    Article  PubMed  CAS  Google Scholar 

  • Eliasson, M.J., Huang, Z., Ferrante, R.J., Sasamata, M., Molliver, S.E., Snyder, S.H., and Moskowitz, M.A., 1999, Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neuronal damage. J. Neurosci. 19: 5910–5918.

    PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Hantraye, P., Brouillet, E., and Beal, M.F., 1999, Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthase. Brain Res. 823: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Ferraro, T.N., Golden, G.T., DeMattei, M., Hare, T.A., and Fariello, R.G., 1986, Effect of 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP) on levels of glutathione in the extrapyramidal system of the mouse. Neuropharmacology 25: 1071–1074.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, J.B., Rubins, J.B., Chen, J.-C., Dickey, B.F., and Volicer, L., 1991, Modification of brain guanine nucleotide-binding regulatory proteins by tryptamine-4,5-dione, a neurotoxic derivative of serotonin. J. Neurochem. 56, 1851–1854.

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein, A.E., Beyeler, M.L., Jackson, J.C., Wilkins, D.G., Gibb, J.W., and Hanson, G.R., 1997, Methamphetamine-induced decrease in tryptophan hydroxylase activity: role of 5-hydroxytryptaminergic transporters. Eur. J. Pharmacol. 324:179–186.

    Article  PubMed  CAS  Google Scholar 

  • Flint, D.H., Tuminello, J.F., and Emptage, M.H., 1993, The inactivation of Fe-S cluster containing hydrolyases by superoxide. J. Biot. Chem. 268:22369–22376.

    CAS  Google Scholar 

  • Forman, L.J., Liu, P., Nagele, R.G., Yin, K., and Wong, P.Y., 1998, Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem. Res. 23: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt, B., Brun, A., Rosengren, E., and Carlsson, A., 1989, The apparent autoxidation rate of catechols in dopamine-rich regions of human brain increases with the degree of depigmentation of substantia nigra. J. Neural Transm. [P-D Dementia Sect.] 1: 279–295.

    Article  CAS  Google Scholar 

  • Fumagalli, F., Gainetdinov, R.R., Valenzano, K.J., and Caron, M.G., 1998, Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J. Neurosci. 18: 4861–4869.

    PubMed  CAS  Google Scholar 

  • Fumagalli, F., Gainetdinov, R.R., Wang, Y.M., Valenzano, K.J., Miller, G.W., and Caron, M.G., 1999, Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knockout mice. J. Neurosci. 19: 2424–2431.

    PubMed  CAS  Google Scholar 

  • Gainetdinov, R.R., Fumagalli, F., Wang, Y.M., Jones, S.R., Levey, A.I., Miller, G.W., and Caron, M.G., 1998, Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J. Neurochem. 70: 1973–1978.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, P.R., Constantino, G., Szabo, C., and Salzman, A.L., 1997, Nitric oxide sensitivity of aconitases. J. Biol. Chem. 272: 25071–25076.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, M., and Riederer, P., 1996, Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J.Neural Transm. 103:987–1041.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, M., Riederer, P., Przuntek, H., and Youdim, M.B.H., 1991, MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur. J. Pharmacol. 208: 273–286.

    Article  PubMed  CAS  Google Scholar 

  • Gibb, J.W., Hanson, G.R., and Johnson, M., 1994, Neurochemical mechanisms of toxicity, in: Amphetamine and Its Analogs Psychopharmacology Toxicology and Abuse (A.K. Cho, and D.S. Segal, Eds.), Academic Press, San Diego, pp. 269–289.

    Google Scholar 

  • Gibb, J.W., Johnson, M., Elayan, I., Lim, H.K., Matsuda, L., and Hanson, G.R., 1997, Neurotoxicity of amphetamines and their metabolites, in Pharmacokinetics Metabolism and Pharmaceutics of Drugs of Abuse (R.S. Rapaka, N. Chiang, and B.R. Martin, Eds.) NIDA Research Monograph 173,pp. 128–145.

    PubMed  CAS  Google Scholar 

  • Gill, R., Foster, A.C., and Woodruff, G.N., 1988, MK-801 is neuroprotective in gerbils when administered during the post-ischemic period. Neuroscience 25: 847–855.

    Article  PubMed  CAS  Google Scholar 

  • Giovanni, A., Sonsalla, P.K., and Heikkila, R.E., 1994, Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 2. Central administration of 1-methyl-4phenylpyridinium. J. Pharmacol. Exp. Therap. 270: 1008–1014.

    CAS  Google Scholar 

  • Giovanni, A., Liang, L.P., Hastings, T.G., and Zigmond, M.J., 1995, Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64: 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  • Globus, M.Y.-T., Busto, R., Dietrich, W.D., Martinez, E., Valdés, I., and Ginsberg, M.D., 1988, Instraischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci. Lett. 91: 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Globus, M.Y.-T., Busto, R., Dietrich, W.D., Martinez, E., Valdés, I., and Ginsberg, M.D., 1989, Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. J. Cereb. Blood Flow Metab. 9: 892–896.

    Article  PubMed  CAS  Google Scholar 

  • Globus, M.Y.-T., Wester, P., Busto, R., and Dietrich, W.D., 1992, Ischemia-induced extracellular release of serotonin plays a role in CAI neuronal death in rats. Stroke 23: 1595–1601.

    Article  PubMed  CAS  Google Scholar 

  • Good, P.F., Olanow, C.W., and Perl, D.P., 1992, Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res. 593: 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Good, P.F., Hsu, A., Werner, P., Perl, D.P., and Olanow, C.W., 1998, Protein nitration in Parkinson’s disease. J. Neuropath. Exp. Neurol. 57: 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Greene, J.G., and Greenamyre, J.T., 1995, Exacerbation of NMDA, AMPA, and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate. J. Neurochem. 64: 2332–2338.

    Article  PubMed  CAS  Google Scholar 

  • Greene, J.G., and Greenamyre, J.T., 1996, Bioenergetics and excitotoxicity: the weak excitotoxic hypothesis, in Neurodegeneration and Neuroprotection in Parkinson’s Disease (C.W. Olanow, P. Jenner and M. Youdim, Eds.,), Academic Press, New York, pp. 125–142.

    Google Scholar 

  • Gutteridge, J.M.C., 1996, Hydroxyl radical, iron, oxidative stress, and neurodegeneration. Ann. N.Y. Acad. Sci. 738:201–213.

    Article  Google Scholar 

  • Han, J., Cheng, F.-C., Yang, Z., and Dryhurst, G., 1999, Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J. Neurochem. 73:1683–1695.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., Adolfsunn, R., Alafuzoff, L., Bucht, G., Marcusson, J., Nyberg, P., Perdahl, E., Wester, P., and Winblad, B., 1985, Transmitter defects in Alzheimer’s disease. Neurochem. Int. 7: 545–563.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila, R.E., Orlansky, H., and Cohen, G., 1975, Studies on the distinction between uptake inhibition and release of (3H) dopamine in rat brain tissue slices. Biochem. Pharmacol. 24: 847–852.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi, H., Takizawa, S., Fukuyama, N., Nakazawa, H., and Shinohara, Y., 1999, 7-Nitroindazole attenuates nitrotyrosine formation in the early phase of cerebral ischemia-reperfusion in mice. Neurosci. Lett. 268:111–113.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., Landenheim, B., Rothman, R.B. Epstein, C., and Cadet, J.L., 1995, Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Res. 677: 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Hochstetler, S.E., Puopolo, M., Gustincich, S., Raviola, E., and Wightman, R.M., 2000, Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Anal. Chem. 72: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz, O., and Kish, S.J., 1980, Biochemical pathophysiology of Parkinson’s disease. Adv. Neurol. 45: 19–34.

    Google Scholar 

  • Hotchkiss, A., and Gibb, J.W., 1980, Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase in rat brain. J. Pharmacol. Exp. Therap. 214:257–263.

    CAS  Google Scholar 

  • Huether, G., Zhou, D., and Rüther, E., 1997, Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its congeners. J. Neural Transm. 104: 771–794.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, M., Nakazawa, T., Abe, K., Takeru, K., and Yamatsu, K., 1989, Extracellular accumulation of glutamate in the hippocampus induced by ischemia is not calcium dependent-in vitro and in vivo evidence. Neurosci. Lett. 96:202–206.

    Article  PubMed  CAS  Google Scholar 

  • Imman, S.Z., Crow, J.P., Newport, G.D., Islam, F., Slikker, W., and Ali, S.F., 1999, Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst. Brain Res. 837: 15–21.

    Article  Google Scholar 

  • Javitch, J.A., D’Amato, R.J., Strittmatter, S.M., and Snyder, S.H., 1985, Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4phenylpyridine by dopamine neurons explains selective toxicity. Proc. Nat. Acad. Sci. U.S.A. 82: 2173–2177.

    Article  CAS  Google Scholar 

  • Jiang, X.-R., Wrona, M.Z., and Dryhurst, G. 1999, Tryptamine-4,5-dione, a putative endotoxic metabolite of the superoxide-mediated oxidation of serotonin, is a mitochondrial toxin: possible implications in neurodegenerative brain disorders. Chem. Res. Toxicol. 12: 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M., Hanson, G.R., and Gibb, J.W., 1989, Effect of MK-801 on the decrease in tryptophan hydroxylase induced by methamphetamine and its methylenedioxy analog. Eur. J. Pharmacol. 165 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., Araki, T., and Kogure, K., 1990, Role of excitotoxic mechanism in the development of neuronal damage following repeated brief cerebral ischemia in the gerbil: protective effects of MK-801 and pentobarbital. Brain Res. 516: 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Keller, J.N., Kindy, M.S., Holtsberg, F.W., St. Clair, D.K., Yen, H.C., Germeyer, A., Steiner, S.M., Bruce-Keller, A.J., Hutchins, J.B., and Mattson, M.P., 1998, Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation and mitochondrial dysfuction. J. Neurosci. 18: 687–697.

    PubMed  CAS  Google Scholar 

  • Kerry, N., and Rice-Evans, C., 1999, Inhibition of peroxynitrite-mediated oxidation of dopamine by flavonoid and phenolic antioxidants and their structural relationships. J. Neurochem. 73 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Keyer, K., and Imlay, J.A., 1997, Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J. Biol. Chem. 272: 27652–27659.

    Article  PubMed  CAS  Google Scholar 

  • Kita, T., Takahashi, M., Kubo, K., Wagner, G.C., and NakashimaT. 1999, Hydroxyl radical formation following methamphetamine administration to rats. Pharmacol. Toxicol. 85: 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi, P, St.Clair, D., Wermer, M., Yen, H.C., Oberley, T., Yang, L., and Beal, M.F., 1998, Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol. Dis. 5: 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Matsumme, H., Matuda, S., and Mizuno, Y., 1998, Association between the gene encoding the E2 subunit of the a-ketoglutarate dehydrogenase complex and Parkinson’s disease. Ann. Neurol. 43 120–123.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, D.M., Aretha, C.W., Geddes, T.J., 1999, Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J. Neurosci. 19: 10289–10294.

    PubMed  CAS  Google Scholar 

  • Lada, M.W., and Kennedy, R.T., 1997, In vivo monitoring of glutathione and cysteine in rat caudate nucleus using microdialysis on-line with capillary zone electrophoresis-laser induced fluorescence detection. J. Neurosci. Meth. 72: 153–159.

    Article  CAS  Google Scholar 

  • Lafon-Cazal, M., Pletri, S., Culcasi, M., and Bockaert, J., 1993, NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Lan, J., and Jiang, D.H., 1997, Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J. Neural Transm. 104: 469–481.

    CAS  Google Scholar 

  • Lancelot, E., Callebert, J., Revaud, M.L., Boulu, R.G., and Plotkine, M., 1995, Detection of hydroxyl radicals in rat striatum during transient focal cerebral ischemia: possible implications in tissue damage. Neurosci. Lett. 197: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • LaVoie, M.J., and Hastings, T.G., 1999, Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J. Neurosci. 19:1484–1491.

    PubMed  CAS  Google Scholar 

  • Le Couteur, J.M., and McClean, A.J., 1998, The ageing liver: drug clearance and an oxygen diffusion barrier hypothesis. Clin. Pharmacokinetics 34: 359–373.

    Article  Google Scholar 

  • Lee, J.-M., Zipfel, G.J., and Choi, D.W., 1999, The changing landscape of ischaemic brain injury mechanisms. Nature 399: A7–A14.

    Article  PubMed  CAS  Google Scholar 

  • Lew, R., Malberg, J.E., Ricaurte, G.A., and Seiden, L.S., 1998, Evidence for and mechanism of action of neurotoxicity of amphetamine related compounds, in Highly Selective Neurotoxins: Basic and Clinical Applications (R.M., Kostrzewa, Ed.), Humana Press, Totowa, N.J., pp. 235–268.

    Google Scholar 

  • Li, H. and Dryhurst, G., 1997, Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease. J. Neurochem. 69: 1530–1541.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Shen, X.-M., and Dryhurst, G., 1998, Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson’s disease. J. Neurochem. 71:2049–2062.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Wallin, C., Weber, S.G., and Sandberg, M., 1999, Net efflux of cysteine, glutathione and related metabolites form rat hippocampal slices during oxygen/glucose deprivation: dependence on ‘y-glutamyl transpeptidase. Brain Res.815: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Loschmann, P.A., Lange, K.W., Wachtel, H., and Turski, L., 1994, MPTP-induced degeneration: interference with glutamatergic toxicity. J. Neural Transm. 43: 133–143.

    CAS  Google Scholar 

  • Madl, J.E., and Allen, D.L., 1995, Hyperthermia depletes adenosine triphosphate and decreases glutamate uptake in rat hippocampal slices. Neuroscience 69: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Marek, G., Vosmer, G., and Seiden, L.S., 1990, Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res. 513: 274–279.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F.R., Sanchez-Ramos, J., and Rosenthal, M., 1991, Selective and non-selective effects of MPTP on oxygen consumption in rat striatal and hippocampal slices. J. Neurochem. 57 1340–1346.

    Article  PubMed  CAS  Google Scholar 

  • Matarredona, E.R., Santiago, M., Machado, A., and Cano, J., 1997, Lack of involvement of glutamate-induced excitotoxicity in MPP+ toxicity in striatal dopamine terminals: possible involvement of ascorbate. Br. J. Pharmacol. 121: 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, K., Idzu, T., Kobayashi, Y., Gonda, T., OkunishiH. and Kimura, K., 1996, Differences in dopamine efflux induced by MPP+ and (3-carbolinium in the striatum of conscious rats. Eur. J. Pharmacol. 315: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, L.A., Schmidt, C.J., Gibb, J.W., and Hanson, G.R., 1987, Ascorbic acid-deficient condition alters central effects of methamphetamine. Brain Res. 400: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R.J., Beal, M.F., Fallon, J., Fedorchak, K., Huang, P.L., Fishman, M.C., and Hyman, B.T., 1997, MPP+-induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol. Dis. 4: 114–121.

    Article  PubMed  CAS  Google Scholar 

  • McNaught, K.S., and Jenner, P., 1999, Altered glial function causes neuronal death and increased neuronal susceptibility to 1-methyl-4-phenylpyridinium-and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J. Neurochem. 73: 2469–2476.

    Article  PubMed  CAS  Google Scholar 

  • Meiergerd, S.M., Patterson, T.A., and Schenk, J.O., 1993, D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J. Neurochem. 61: 764–767.

    Article  PubMed  CAS  Google Scholar 

  • Merino, M., Vizuete, M.L., Cano, L., and Machado, A., 1999, The non-NMDA glutamate receptor antagonists 5-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitrosulfamoylbenzo(f)quinoxaline, but not NMDA antagonists, block the intrastriatal neurotoxic effect of MPP+. J. Neurochem. 73: 750–757.

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer, K., Sandy, M.S., Smith, M.T., and Di Monte, D., 1992, Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes. Arch. Biochem. Biophys. 295: 132–136.

    Article  PubMed  Google Scholar 

  • Mizuno, Y., Saitoh, T., and Sone, N., 1987, Inhibition of mitochondrial a-ketoglutarate dehydrogenase by 1methyl-4-phenylpyridinium ion. Biochem. Biophys. Res. Commun. 143: 971–976.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, Y., Matuda, S., Yoshino, H., MoriH. Hattori, N., and Ikebe, S.-J., 1994, An immunohistochemical study on a-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann. Neurol. 35: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Moszczynska, A., Turenne, S., and Kish, S.J., 1998, Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neurosci. Lett. 355: 49–52.

    Article  Google Scholar 

  • Nash, J.F., and Yamamoto, B.K., 1992, Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res. 581: 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Novelli, A., Reilly, J.A., Lysko, P.G., and Henneberry, R.C., 1988, Glutamate becomes neurotoxic when intracellular energy levels are reduced. Brain Res. 451: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307: 462–465.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, S.J., Weihmuller, F.B., and Marshall, J.F., 1991, Multiple methamphetamine injections induce marked increases in extracellular dopamine which correlate with subsequent neurotoxicity. Brain Res. 564: 256–260.

    Article  PubMed  Google Scholar 

  • Oishi, T., Hasegawa, E., and Murai, Y., 1993, Sulfhydryl drugs reduce neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. J. Neural Transm. (P-D Dement. Sect.] 6: 45–52.

    Article  CAS  Google Scholar 

  • Olney, J.W., Zorumski, C., Price, M.T., and Labruyere, J., 1990, L-Cysteine, a bicarbonate-sensitive excitotoxin. Science 248: 596–599.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, R.J. and Justice, J.B., 1993, Quantitative microdialysis under transient conditions. Anal. Chem. 65: 1017–1022.

    Article  Google Scholar 

  • Palmer, C., Roberts, R.L., and Bero, C., 1994, Deferoxamine posttreatment reduces brain injury in neonatal rats. Stroke 25: 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  • Patt, A., Horesh, I.R., Berger, E.M., Harken, A.H., and Repine, J.E., 1990, Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J. Pediatr. Surg. 25: 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J.A., Yassin, M.S., and Oreland, L., 1998, Normalization of cytochrome c oxidase activity in the rat brain by neuroleptics after chronic treatment with PCP or methamphetamine. Neuropharmacology 36: 1665–1678.

    Article  Google Scholar 

  • Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A.B., Simonettá, S., Fah, S., Carlson, E., Epstein, C.J., and Cadet, J.L., 1992, Transgenic mice with increased Cu/Zn superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12: 1658–1667.

    PubMed  CAS  Google Scholar 

  • Pu, C., Broening, H.W., and Vorhees, C.V., 1996, Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23: 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Puka-Sundvall, M., Sandberg, M., and Hagberg, H. 1997, Brain injury after hypoxia-ischemia in newborn rats: relationship to extracellular levels of excitatory amino acids and cysteine. Brain Res. 750: 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Pullan, L.M., Olney, J.W., Price, M.T., Compton, R.P., Hood, W.F., Michel, J., and Monahan, J.B., 1987, Excitatory amino acid receptor potency and subclass specificity of sulfur-containing amino acids. J. Neurochem. 49: 1301–1307.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli, W.A., and Duffy, T.E., 1983, Regional energy balance in the rat brain after transient forebrain ischemia. J. Neurochem. 40: 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Quijano, C., Alvarez, B., Gatti, R.M., Augusto, O., and Radi, R., 1997, Pathways of peroxynitrite oxidation of thiol groups. Biochem. J. 322 (Part 1): 167–173.

    PubMed  CAS  Google Scholar 

  • Raiteri, M., Cerrito, F., Cervoni, A.M., and Levi, G., 1979, Dopamine can be released by two mechanisms differentially affected by the dopamine transporter inhibitor nomifensine. J. Pharmacol. Exp. Therap. 208: 195–202.

    CAS  Google Scholar 

  • Ramsay, R.R., Dadgar, J., Trevor, A., and Singer, T.P., 1986, Energy-driven uptake of N-methyl-4- phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP. Life Sci. 39: 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, B.R., Kunis, D.M., Irwin, I., and Langston, J.W., 1987, Astrocytes convert the parkinsonian inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Raps, S.P., Lai, J.C.K., Hertz, L., and Cooper, A.J.L., 1989, Glutathione is present in high concentrations in cultured astrocytes but not cultured neurons. Brain Res. 493: 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Reed, D.J., and Savage, M.K., 1995, Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochim. Biophys. Acta 1271: 43–45.

    Article  PubMed  Google Scholar 

  • Rehncrona, S., Folbergrovã, J., Smith, D.S., and Siesjö, B. 1980, Pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J. Neurochem. 34: 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Revuelta, M., Romero-Ramos, M., Venero, J.L., Milian, F., Machado, A., and Cano, J., 1997, Less-induced MPP+ neurotoxicity on striatal slices from guinea pigs fed with a vitamin C lacking diet. Neuroscience 77: 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G.A., Schuster, C.R., and Seiden, L.S., 1980, Long-term effects of repeated methamphetamine administration on dopaminergic and serotonergic neurons in the rat brain: a regional study. Brain Res. 193: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte, G.A., Fuller, R.W., Perry, K.W., Seiden, L.S., and Schuster, C.R., 1983, Fluoxetine increases long-lasting neostriatal dopamine depletion after administration of d-methamphetamine and d-amphetamine. Neuropharmacology 22: 1165–1169.

    Article  PubMed  CAS  Google Scholar 

  • Rollema, H. Damsma, G., Horn, A.S., De Vries, J.B. and Westerink, B.H.C., 1986, Brain dialysis in conscious rats reveals an instantaneous massive release of striatal dopamine in response to MPP+. Eur. J. Pharmacol. 126: 345–346.

    Article  PubMed  CAS  Google Scholar 

  • Rose, S., Hindmarsh, J.G., and Jenner, P., 1999, Neuronal nitric oxide synthase inhibition reduces MPP+evoked hydroxyl radical formation but not dopamine efflux in rat striatum. J. Neural Transm. 106 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, D.B., Le, W., Smith, R.G., and Appel, S.H., 1998, Antibodies from patients with Parkinson’s disease react with protein modified by dopamine oxidation. J. Neurosci. Res. 53: 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Royland, J.E., and Langston, J.W., 1998, MPTP: A dopaminergic neurotoxin, in Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, Ed.), Humana Press, Totowa, N.J., pp. 141–194.

    Google Scholar 

  • Sagara, J., Miura, K., and Bannai, S., 1993a, Cystine uptake and glutathione level in fetal brain cells in primary culture and suspension. J. Neurochem. 61: 1667–1671.

    Article  CAS  Google Scholar 

  • Sagara, J., Miura, K., and Bannai, S., 1993b, Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61: 1672–1676.

    Article  CAS  Google Scholar 

  • Saggu, H., Cooksey, J., Dexter, D., Wells, F.R., Lees, A.J., Jenner, P., and Marsden, C.D., 1989, A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 53: 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Santiago, M., Matarredona, E.R., Granero, L., Cano, J., and Machado, A., 1997, Neuroprotective effects of the iron chelator desferrioxamine against MPP+ toxicity on striatal dopaminergic terminals. J. Neurochem. 68: 732–738.

    Article  PubMed  CAS  Google Scholar 

  • Schapira, A.H.V., Mann, V.M., Cooper, J.N., Dexter, D., Daniel, S.E., Jenner, P., Clark, J.B., and Marsden, C.D., 1990, Anatomic and disease specificity of NADH-CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem. 55: 2142–2145.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J.B. Matthews, R.T., and Beal, M.F., 1995, Role of nitric oxide in neurodegenerative diseases. Curr. Opin. Neurol. 8: 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J.B., Matthews, R.T., Klockgether, T., Dichgans, J. and Beal, M.F., 1997, The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol. Cell. Biochem. 174: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Seelig, G.F., and Meister, A., 1985, Glutathione biosynthesis; y-glutamylcysteine synthetase from rat kidney. Meth. Enzymol. 113: 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Sensi, S.L., Yin, H.Z., Carriedo, S.G., Rao, S.S., and Weiss, J.H., 1999, Preferential Zn2+ influx through Ca2+ permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Nat. Acad. Sci. U.S.A. 96: 2414–2419.

    Article  CAS  Google Scholar 

  • Shen, X.-M., and Dryhurst, G., 1996a, Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson’s disease. Chem. Res. Toxicol. 9: 751–763.

    Article  CAS  Google Scholar 

  • Shen, X.-M., and Dryhurst, G., 1996b, Oxidation chemistry of (-)-norepinephrine in the presence of Lcysteine. J. Med. Chem. 39 2018–2029.

    Article  CAS  Google Scholar 

  • Shen, X.-M., Li, H., and Dryhurst, G., 2000, Oxidative metabolites of 5-S-cysteinyldopamine inhibit the aketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson’s disease. J. Neural Transm. 00: 00–00.

    Google Scholar 

  • Sian, J.,Dexter, D., Lees, A., Daniel, S., Agid, Y., Javoy-Agid, F., Jenner, P., and Marsden, C.D., 1994a, Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting the basal ganglia. Ann. Neurol. 36: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Jenner, P., and Marsden, C.D., 1994b, Glutathione-related enzymes in the brain in Parkinson’s disease. Ann. Neural. 36: 356–361.

    Article  CAS  Google Scholar 

  • Sims, N.R., 1991, Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat. J. Neurochem. 56: 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  • Sims, N.R., and Zaidan, E., 1995, Biochemical changes associated with selective neuronal death following short-term cerbral ischaemia. Int. J. Biochem. Cell Biol. 27: 531–550.

    Article  PubMed  CAS  Google Scholar 

  • Slivka, A., and Cohen, G., 1993, Brain ischemia markedly elevates levels of the neurotoxic amino acid, cysteine. Brain Res. 608: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T.S., and Bennett, J.P., 1997, Mitochondrial toxins in models of neurodegenerative disease.I. In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res. 765: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T.S., Swerdlow, R.H., Parker, W.D., and BennettJ.P. 1994, Reduction of MPP+-induced hydroxyl radical formation and nigrostriatal MPTP toxicity by inhibiting nitric oxide synthase. Neuroreport 5: 2598–2600.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla, P.K., Gibb, J.W., and Hanson, G.R., 1986, Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. J. Pharmacol. Exp. Therap. 238: 932–937.

    CAS  Google Scholar 

  • Sonsalla, P.K., Nicklas, W.J., and Heikkila, R.E., 1989, Roles for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic neurotoxicity. Science 243: 398–400.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla, P.K., Jochnowitz, N.D., Zeevalk, G.D., Oostveen, J.A., and Hall, E.D., 1996, Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res. 738 172–175.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, J.P.E. Jenner, P., Daniel, S.E., Lees, A.J., Marsden, C.D., and Halliwell, B., 1998, Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease. Possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71: 2112–2122.

    Article  PubMed  CAS  Google Scholar 

  • Sriram, K., Pai, K.S., Boyd, M.R., and Ravindranath, V., 1997, Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res. 749: 44–52.

    Article  PubMed  CAS  Google Scholar 

  • Ste-Marie, L., Vachon, P., Vachon, L., Bemeur, C., Guertin, M.C., and Montgomery, J., 2000, Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia. Can. J. Neurol. 27 152–159.

    CAS  Google Scholar 

  • Stephens, S.E., and Yamamoto, B.K., 1994, Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17: 203–209.

    Article  Google Scholar 

  • Steranka, L.R., and Rhina, A.W., 1987, Effect of cysteine on the persistent depletion of brain monoamines by amphetamine, p-chloroamphetamine and MPTP. Eur. J. Pharmacol. 133: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Stole, E., Smith, T.K., Manning, J.M., and Meister, A., 1994, Interaction of γ-glutamyl transpeptidase with acivicin. J. Biol. Chem. 269: 21435–21439.

    PubMed  CAS  Google Scholar 

  • Stone, D.M., Johnson, M., Hanson, G.R., and Gibb, J.W., 1999, Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves oxidation of sulfhydryl sites. Eur. J. Pharmacol. 172: 93–97.

    Google Scholar 

  • Srivastava, R., Brouillet, E., Beal, M.F., Storey, E., and Hyman, B.T., 1993, Blockade of 1-methyl-4phenylpyridinium (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: a stereological estimate of neuronal loss. Neurobiol. Aging 14: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Storey, E., Hyman, B.T., Jenkins, B., Brouillet, E., Miller, J.M., Rosen, B.R. and Beal, M.F., 1992, 1Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J. Neurochem. 58: 1975–1978.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, R.H., Parks, J.H., Miller, S.W., Tuttle, J.B., Trimmer, P.A., Sheehan, J.P., Bennett, J.P., Davis, R.E., and Parker, W.D., 1996, Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40: 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Tate, S.S., and Meister, A., 1985, y-Gluthmyl transpeptidase from kidney. Meth. Enzymol. 113: 400–437.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, B., Muralikrishnan, D., and Mohanakumar, K.P., 2000, In vivo hydroxyl radical generation in the striatum following systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res. 852: 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Volicer, L., Langlais, P.J., Matson, W.R., Mark, K.A., and Gamache, P.H. 1985, Serotoninergic system in dementia of the Alzheimer type: abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal fluid. Arch. Neurol. 42: 1158–1161.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, K.R., Kleinholz, M., and Myers, R.E., 1990, Delayed onset of neurologic deterioration following anoxia/ischemia coincides with appearance of impaired brain mitochondrial respiration and decreased cytochrome oxidase activity. J. Cereb. Blood Flow Metab. 10: 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.F., and Cynader, M.X., 2000, Astrocytes provide cysteine to neurons by releasing glutathione. J. Neurochem. 74: 1434–1442.

    Article  PubMed  CAS  Google Scholar 

  • Wefers, H., and Sies, H., 1983, Oxidation of glutathione by the superoxide radical to the disulfide and sulfonate yielding singlet oxygen. Eur. J. Biochem. 137: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger, J., Cohen, G., and Nieves-Rosa, J., 1983, Nerve terminal damage in cerebral ischemia: greater susceptibility of catecholamine nerve terminals relative to serotonergic nerve terminals. Stroke 14: 986–989.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, H.L., Hashim, A., Lajtha, A., and Sershen, H., 1988, (-)-2-Oxo-4-thiazolidine carboxylic acid attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced neurotoxicity. Res. Commun. Subst. Abuse 9: 53–68.

    Google Scholar 

  • Wong, K.-S., Goyal, R.N., Wrona, M.Z., Blank, C.L., and Dryhurst, G., 1993, 7-S-Glutathiony1tryptamine-4,5-dione: a possible aberrant metabolite of serotonin. Biochem. Pharmacol. 46: 1637–1652.

    Article  PubMed  CAS  Google Scholar 

  • Wood, N., 1997, Genes and parkinsonism. J. Neurol. Neurosurg. Psychiatry 62: 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Wrona, M.Z., and Dryhurst, G., 1998, Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders. Chem. Res. Toxicol. 11: 639–650.

    Article  PubMed  CAS  Google Scholar 

  • Wu, E.Y., Smith, M.T., Bellomo, G., and Di Monte, D., 1990, Relationship between mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes. Arch. Biochem. Biophys. 282 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Wullner, U., Loschmann, P.A., Schulz, J.B., Schmid, A., Dringen, R., Eblen, F., Turski, L., and Klockgether, T., 1996, Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport 7: 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Xie, C.X., St. Pyrek, J., Porter, W.H., and Yokel, R.A., 1995, Hydroxyl radical generation in rat brain is initiated by iron not aluminum, as determined by microdialysis with salicylate trapping and GS-MS analysis. Neurotoxicology 16: 489–496.

    PubMed  CAS  Google Scholar 

  • Xin, W., Shen, X.-M., Li, H., and Dryhurst, G., 2000, Oxidative metabolites of 5-S-cysteinylnorepinephrine are irreversible inhibitors of mitochondrial complex I and the a-ketoglutarate dehydrogenase and pyruvate dehydrogenase complexes: possible implications for neurodegenerative brain disorders. Chem. Res. Toxicol. 00 00–00.

    Google Scholar 

  • Xu, Y.M., Stokes, A.H., Roskoski, R., and Vrana, K.E., 1998, Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J. Neurosci. 54: 691–697.

    Article  CAS  Google Scholar 

  • Yamamoto, M., Sakamoto, N., Iwai, A., Yatsugi, S., Hidaka, K., Noguchi, K., and Yuasa, T., 1993, Protective actions of YM737, a new glutathione analog, against cerebral ischemia in rats. Res. Commun. Chem. Pathol. Pharmacol. 81: 221–232.

    PubMed  CAS  Google Scholar 

  • Yamamoto, B., and Zhu, W., 1998, The effects of methamphetamine on the production of free radicals and oxidative stress. J. Pharmacol. Exp. Therap. 287: 107–114.

    CAS  Google Scholar 

  • Yang, G., Chan, P.H., Chen, J., Carlson, E., Chen, S.F., Weinstein, P., Epstein, C.J., and Kamii, H. 1994, Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25: 165–170.

    Article  PubMed  Google Scholar 

  • Yang, C.S., Lin, N.N., Liu, L., Tsai, P.J., and Kuo, J.S., 1995, Lowered brain glutathione by diethylmaleate decreased the glutamate release by cerebral ischemia in the anesthetized rat. Brain Res. 698, 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.S., Lin, N.N., Tsai, P.J., Liu, L., and Kuo, J.S., 1996, In vivo evidence of hydroxyl radical formation induced by elevation of extracellular glutamate after cerebral ischemia in the cortex of anesthetized rats. Free Rad. Biol. Med. 20 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., Peters, J.L., Allen, C., Chern, S.-S., Coalson, R.D., and Michael, A.C., 2000, A theoretical description of microdialysis with mass transport coupled to chemical events. Anal. Chem. 72: 2042–2049.

    Article  PubMed  CAS  Google Scholar 

  • Yong, V.W., Perry, T.L., and Krisman, A.A., 1986, Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. Neurosci. Lett. 63: 56–60.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, T., Tanaka, M., Somomatsu, A., and Hirai, S., 1995, Activated microglia cause superoxide-mediated release of iron from ferritin. Neurosci. Lett. 190: 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Zaidan, E., Sheu, K.F., and Sims, N.R., 1998, The pyruvate dehydrogenase complex is partially inactivated during early recirculation following short-term forebrain ischemia in rats. J. Neurochem. 70: 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Zängerle, L., Cuenod, M., Winterhalter, K.H., and Do, K.Q., 1992, Screening of thiol compounds: depolarization-induced release of glutathione and cysteine from rat brain slices. J. Neurochem. 59: 181–189.

    Article  PubMed  Google Scholar 

  • Zeevalk, G.D., and Nicklas, W.J., 1991, Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J. Pharmacol. Exp. Therap. 257: 870–878.

    CAS  Google Scholar 

  • Zeevalk, G.D., Davis, N., Hyndman, A.G., and Nicklase, W.J., 1998, Origins of the extracellular glutamate released during total metabolic blockade of the immature retina. J. Neurochem. 71:2373–2381.

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk, G.D., Manzino, L., and Sonsalla, P.K., 2000, NMDA receptors modulate dopamine loss due to energy impairment in the substantia nigra but not striatum. Exp. Neurol. 161: 638–646.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dryhurst, G. (2001). Are Dopamine, Norepinephrine, and Serotonin Precursors of Biologically Reactive Intermediates Involved in the Pathogenesis of Neurodegenerative Brain Disorders?. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_61

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics