Advertisement

Godunov Methods pp 985-1005 | Cite as

Discontinuous Galerkin Methods for Hyperbolic Partial Differential Equations

  • J. J. W. Van Der Vegt
  • H. Van Der Ven
  • O. J. Boelens

Abstract

In this paper a survey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas dynamics in time-dependent flows domains and to techniques which reduce the computational complexity of the DG method.

Keywords

Euler Equation Discontinuous Galerkin Method Arbitrary Lagrangian Eulerian Slope Limiter Hyperbolic Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.L. Atkins and C.-W. Shu, Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations, AIAA J. 36, 775 (1998).CrossRefGoogle Scholar
  2. T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in Proceedings “An introduction to recent developments in theory and numerics for conservation laws”, Eds. D. Kröner et al., Lecture Notes in Computational Science and Engineering, 5, 195 (1998).Google Scholar
  3. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131, 267 (1997).MathSciNetMATHCrossRefGoogle Scholar
  4. F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys. 138, 251 (1997).MathSciNetMATHCrossRefGoogle Scholar
  5. C.E. Baumann, An hp-adaptive discontinuous finite element method for computational fluid dynamics, Ph.D. dissertation, The University of Texas at Austin, Aug. 1997.Google Scholar
  6. C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for the Euler and Navier-Stokes equations, to appear in Int. J. Numer. Meth. Fluids (1999).Google Scholar
  7. K.S. Bey and J.T. Oden, A Runge-Kutta discontinuous finite element method for high speed flows, AIAA Paper 91-1575-CP (1991).Google Scholar
  8. K.S. Bey and J.T. Oden, hp-Version discontinuous Galerkin methods for hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg. 133, 259 (1996).MathSciNetMATHCrossRefGoogle Scholar
  9. R. Biswas, K. D. Devine, and J. Flaherty, Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255 (1994).MathSciNetMATHCrossRefGoogle Scholar
  10. A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comp., 31,333 (1977).MathSciNetMATHCrossRefGoogle Scholar
  11. G. Chavent and G. Salzano, A finite element method for the 1D water flooding problem with gravity, J. of Comput. Physics 45, 307 (1982).MathSciNetMATHCrossRefGoogle Scholar
  12. G. Chavent and B. Cockburn, The local projection P°-P1-discontinuous-Galerkin finite element method for scalar conservation laws, MAN Math. Modelling and Numer.Anal. 23, 565 (1989).MathSciNetMATHGoogle Scholar
  13. P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Volume II, part 1, Finite element methods, North Holland, Amsterdam (1991).MATHGoogle Scholar
  14. B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P1 discontinuous Galerkin finite element method for scalar conservation laws, Proceeding of the First National Fluid Dynamics Congress, Cincinnati, Ohio (1988).Google Scholar
  15. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comput. 52, 411 (1989).MathSciNetMATHGoogle Scholar
  16. B. Cockburn, S.-Y. Lin and C.-W. Shu, TVD-Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, J. Comput Phys. 84, 90 (1989).MathSciNetMATHCrossRefGoogle Scholar
  17. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comput. 54, 545 (1990).MathSciNetMATHGoogle Scholar
  18. B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Math. Modelling and Num. Anal. 25, 337 (1991).MathSciNetMATHGoogle Scholar
  19. B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V, J. Comput. Phys. 141, 199 (1998).MathSciNetMATHCrossRefGoogle Scholar
  20. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35, 2440 (1998).MathSciNetMATHCrossRefGoogle Scholar
  21. B. Cockburn, Discontinuous Galerkin methods for convection dominated problems, in High order methods for computational physics, edited by H. Deconinck and T. J. Barth, Lecture Notes in Computational Science and Engineering, 9 (Springer Verlag, 1999), p. 69.CrossRefGoogle Scholar
  22. B. Cockburn, G. Karniadakis and C.-W. Shu, An overview of the development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods, Theory, Computation and Applications, edited by B. Cockburn, G. Karniadakis and C.-W. Shu, Lecture Notes in Computational Science and Engineering, 11, 3 (Springer Verlag, 2000).CrossRefGoogle Scholar
  23. P. Hansbo and C. Johnson, Streamline Diffusion Finite Element Methods for Fluid Flow, in Von Karman Institute for Fluid Dynamics, Lecture Series 1995-02 (1995).Google Scholar
  24. F.Q. Hu, M.Y. Hussaini, and P. Rasetarinera, An analysis of the discontinuous Galerkin method for wave propagation problems, J. of Comput. Physics, 151, 921 (1999).MATHCrossRefGoogle Scholar
  25. A. Jameson, Time Dependent Calculations using Multigrid, with Applications to Unsteady Flows past Airfoils and Wings, AIAA Paper 91-1596 (1991).Google Scholar
  26. C. Johnson and J. Pitkaränta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46, 1 (1986).MathSciNetMATHCrossRefGoogle Scholar
  27. C. Johnson, A. Szepessy, and P. Hansbo, On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp. 54, 107 (1990).MathSciNetMATHCrossRefGoogle Scholar
  28. D.S. Kershaw, M.K. Prasad, M.J. Shaw and J.L. Milovich, 3D Unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Comput. Methods Appl. Mech. Engrg. 158, 81 (1998).MathSciNetMATHCrossRefGoogle Scholar
  29. P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport problem, in Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by C. de Boor (Academic Press, 1974), p. 89.Google Scholar
  30. M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. Methods Appl. Mech. Engrg. 134, 71 (1996).MATHCrossRefGoogle Scholar
  31. D.P. Lockard and H.L. Atkins, Efficient implementation of the quadrature-free discontinuous Galerkin method, AIAA paper 99-3309, in Proc. 14th AIAA CFD Conference, Norfolk Virginia (1999).Google Scholar
  32. S.-Y. Lin and Y.-S. Chin, Discontinuous Galerkin finite element method for Euler and Navier-Stokes equations, AIAA J., 31, 2016 (1993).MATHCrossRefGoogle Scholar
  33. R.B. Lowrie, P.L. Roe, and B. van Leer, A space-time discontinuous Galerkin method for the time-accurate numerical solution of hyperbolic conservation laws, AIAA paper 95-1658-CP, in Proc. 12th AIAA CFD Conference, San Diego, California (1995).Google Scholar
  34. R.B. Lowrie and J.E. Morel, Discontinuous Galerkin for stiff hyperbolic systems, AIAA paper 99-3307, in Proc. 14th AIAA CFD Conference, Norfolk Virginia (1999).Google Scholar
  35. A. Masud and T.J.R. Hughes, A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput. Methods Appl. Mech. Engrg. 146, 91 (1997).MathSciNetMATHCrossRefGoogle Scholar
  36. N.D. Melson, M.D. Sanetrik and H.L. Atkins, Time-accurate Navier-Stokes calculations with multigrid acceleration, in Proc. 6th Copper Mountain Confer, on Multigrid Methods (1993).Google Scholar
  37. J.T. Oden, I. Babuska, and C.E. Baumann, A discontinuous hp finite element method for diffusion problems, J. Comput. Phys. 146, 491 (1998).MathSciNetMATHCrossRefGoogle Scholar
  38. S. Osher and S. Chakravarthy, Upwind schemes and boundary conditions with applications to Euler equations in general geometries, J. Comput. Phys. 50, 447 (1983).MathSciNetMATHCrossRefGoogle Scholar
  39. W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, technical report LA-UR-73-479, Los Alamos Scientific Laboratory, New Mexico (1973).Google Scholar
  40. F. Shakib, T.J.R. Hughes and Z. Johan, A new finite element method for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 89, 141 (1991).MathSciNetCrossRefGoogle Scholar
  41. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77, 439 (1988).MathSciNetMATHCrossRefGoogle Scholar
  42. P.D. Thomas and C.K. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA J. 17, 1030 (1979).MathSciNetMATHCrossRefGoogle Scholar
  43. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer Verlag, Berlin, Germany (1997).MATHGoogle Scholar
  44. J.J.W. van der Vegt, Anisotropic grid refinement using an unstructured discontinuous Galerkin method for the three-dimensional Euler equations of gas dynamics, in Proc. 12th AIAA CFD Conference, San Diego, California, 1995. [AIAA Paper 95-1657-CP]Google Scholar
  45. J.J.W. van der Vegt and H. van der Ven, Hexahedron Based Grid Adaptation for Future Large Eddy Simulation, in Proc. Progress and Challenges in CFD Methods and Algorithms, Seville, Spain, 1995. [AGARD CP-578, p. 22-1]Google Scholar
  46. J.J.W. van der Vegt and H. van der Ven, Discontinuous Galerkin finite element method with anisotropic local grid refinement for inviscid compressible flows, J. Comput. Phys. 141, 46 (1998).MATHCrossRefGoogle Scholar
  47. J.J.W. van der Vegt, Technical Publication TP-98239, National Aerospace Laboratory NLR, Amsterdam, The Netherlands, http://www.nlr.nl/public/library/1999-l/iwindex.html (1998).Google Scholar
  48. J.J.W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows, submitted to J. Comput. Phys. (2000).Google Scholar
  49. H. van der Ven and J.J.W. van der Vegt, Experiences with Advanced CFD Algorithms on NEC SX-4, in Proc. Vector and Parallel Processing VECPAR ’96, edited by Palma and Dongarra, Lect. Notes in Computer Science, (Springer Verlag, 1997).Google Scholar
  50. H. van der Ven and J.J.W. van der Vegt, Partitioning and parallel development of an unstructured, adaptive flow solver on the NEC SX-4, in Proc. Parallel Computational Fluid Dynamics ’97 Conference, edited by D.R. Emerson et aL, (North Holland, 1998).Google Scholar
  51. H. van der Ven and J.J.W. van der Vegt, Accuracy, resolution, and computational complexity of a discontinuous Galerkin finite element method, in Discontinuous Galerkin Methods, Theory, Computation and Applications, edited by B. Cockburn, G. Karniadakis and C.-W. Shu, Lecture Notes in Computational Science and Engineering, 11, 439 (Springer Verlag, 2000).CrossRefGoogle Scholar
  52. B. van Leer, Towards the ultimate conservative scheme, II Monotonicity and conservation combined in a second order scheme, J. Comput. Phys. 14, 361 (1974).MATHCrossRefGoogle Scholar
  53. V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comput. Phys. 118, 120 (1995).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • J. J. W. Van Der Vegt
    • 1
  • H. Van Der Ven
    • 2
  • O. J. Boelens
    • 2
  1. 1.Faculty of Mathematical SciencesUniversity of TwenteEnschedeThe Netherlands
  2. 2.National Aerospace Laboratory NLRAmsterdamThe Netherlands

Personalised recommendations