The Numerical Simulation of Relativistic Fluid Flow with Strong Shocks

  • Antonio Marquina


In this review we present and analyze the performance of a Go-dunov type method applied to relativistic fluid flow. Our model equations are the corresponding Euler equations for special relativistic hydrodynamics. By choosing an appropriate vector of unknowns, the equations of special relativistic fluid dynamics (RFD) can be written as a hyperbolic system of conservation laws. We give a complete description of the spectral decomposition of the Jacobian matrices associated to the fluxes in each spatial direction, (see (Donat et al., 1998), for details), which is the essential ingredient of the Godunov-type numerical method we propose in this paper. We also review a numerical flux formula that avoids/reduces numerical difficulties appearing in the ultrarelativistic regime, (i.e., high Lorentz factors). Using the spectral decompositions in a fundamental way, we construct high order versions of the basic first order scheme described by Donat and Marquina in ((Donat, Marquina, 1996)). We study, as a sample, a paricular shock tube test where special difficulties arise. We show two dimensional simulations where strong shocks are present, including a supersonic jet stream in a strongly ultra-relativistic scenario.


Strong Shock Jacobian Matrice Relativistic Flow Riemann Solver Artificial Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloy M A, Ibáñez J Ma, Martí J Ma and Mueller E, GENESIS: A High-Resolution Code for 3D Relativistic Hydrodynamics, ApJ, 122, pp 151–166 (1999).CrossRefGoogle Scholar
  2. Aloy M A, Martí J Ma and Marquina A, The Ghost Fluid Method for Relativistic Flow, (1999) PreprintGoogle Scholar
  3. Aloy M A, Pons J A, IbáñezJ Ma, An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes, Computer Physics Communications, 120, pp. 115–121, (1999).MATHCrossRefGoogle Scholar
  4. Anile A M, Relativistic Fluids and Magnetofluids, (Cambridge University Press, CamUK, 1989).CrossRefGoogle Scholar
  5. D. Balsara, Riemann Solver for Relativistic Hydrodynamics J. Comput. Phys., 114, 284 (1994).MathSciNetMATHCrossRefGoogle Scholar
  6. Chiavassa G and Donat R, Numerical Experiments with Multilevel Schemes for Conservation Laws, Preprint, (1999).Google Scholar
  7. Dai W and Woodward P R, An Iterative Riemann Solver for Relativistic Hydrodynamics, SIAM J. Sci. Stat. Comput, 18, pp 982–995 (1997)MathSciNetMATHCrossRefGoogle Scholar
  8. Dolezal A and Wong S S M Relativistic Hydrodynamics and Essentially Non-Oscillatory Shock Capturing Schemes J. Comput. Phys., 120, 266–277 (1995).MathSciNetMATHCrossRefGoogle Scholar
  9. Donat R, Font J A, Ibáñez J M, Marquina A, A Flux-Split Algorithm for Relavistic Flows J. Comput. Phys., 146, 58–81, (1998)MATHCrossRefGoogle Scholar
  10. Donat R and Marquina A, Capturing Shock Reflections: An Improved Flux Formula J. Comput. Phys., 125, 42 (1996).MathSciNetMATHCrossRefGoogle Scholar
  11. Donat R and Marquina A, Computing Strong Shocks in Ultrarelativistic Flows: A Robust Alternative, Hyperbofic Problems, Theory, Numerics, Applications, Seventh International Conference in Zuerich, Vol I. International Series of Numerical Mathematics, Birkhauser Verlag (Basel) 129, 243–251, (1999).Google Scholar
  12. Duncan G C and Hughes P A, Simulations of Relativistic Extragalactic Jets, Astrophys. J., 436, L119 (1994).CrossRefGoogle Scholar
  13. Eulderink F, Numerical Relativistic Hydrodynamics, Ph.D. Thesis, University of Leiden (1993).Google Scholar
  14. Eulderink F and Mellema G, General Relativistic Hydrodynamics with a Roe Solver, Astron. Astrophys. Suppl. 110, pp 587–623 (1995).Google Scholar
  15. Falle, S A E G, Komissarov, S S An Upwind Numerical Scheme for Relativistic Hydrodynamics with a General Equation of State, Mon. Not. Roy. Astronom. Soc. 278, 586–602 (1996)Google Scholar
  16. Fedkiw R, Merriman B, Donat R, Osher S J, UCLA CAM Report,vol. 96–18,(1996).Google Scholar
  17. Fedkiw R, Aslam T, Merriman B, Osher S J, UCLA CAM Report,vol. 98–17,(1998).Google Scholar
  18. Fedkiw R, Marquina A, Merriman B, An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows, J. Comput. Phys., 148, 545–578, (1999).MathSciNetMATHCrossRefGoogle Scholar
  19. Font J A, Ibáñez J Ma, Marquina A and Martí J Ma, Multidimensional Relativistic Hydrodynamics: Characteristic Fields and Modern High-Resolution Shock-Capturing Schemes, Astron. Astrophys., 282, 304–314, (1994).Google Scholar
  20. Font J A, Miller M, Suen W and Tobias M, Three Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests. Phys. Rev. D, 61, pp 044011.1 - 044011.26., (2000).MathSciNetCrossRefGoogle Scholar
  21. Ibáñez J Ma, Font J A, Martí J Ma and Miralies J A, Proceedings from the 18th. Texas Sym. on Relativistic Astrophysics, (World Scientific Press, 1997).Google Scholar
  22. Font J A, Ibáñez J Ma and Papadopoulos P, Astrophys. J. 507, L67,(1998).CrossRefGoogle Scholar
  23. Font J A, Ibáñez J Ma and Papadopoulos P, Mon. Not. Roy. Astronom. press(1999); astro-ph/9810344.Google Scholar
  24. LeVeque R J, Numerical Methods for Conservation Laws, Birkhäuser (1991).Google Scholar
  25. LeVeque R J, in Computational Methods for Astrophysical fluid flow, Saas-Fee Advanced Course, 27 Eds. O. Steiner and A. Gautshy, pp. 1–159, Springer-Verlag, (Berlin), (1998).CrossRefGoogle Scholar
  26. Marquina A, Martí J Ma, Ibáñez J Ma, Miralles J A and Donat R, Astron. Astrophys., 258, 566 (1992).Google Scholar
  27. Marquina A, Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws, SIAM J. Scient. Comp., 15, pp 892–915, (1994).MathSciNetMATHCrossRefGoogle Scholar
  28. Martí J Ma, Ibáñez J Ma and Miralles J A, Numerical Relativistic Hydrodynamics: Local Characteristic Approach, Phys. Rev., D43, 3794 (1991).Google Scholar
  29. Martí J Ma and Mueller E, Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics, J. Comput. Phys., 123, p 1–14, (1996).MathSciNetMATHCrossRefGoogle Scholar
  30. Martí J Ma and Mueller E, Numerical Hydrodynamics in Special Relativity, Living Reviews in Relativity, Vol. 2, (1999), (to appear).Google Scholar
  31. Martí J Ma, Mueller E, Font J A and Ibáñez J Ma, Astrophys. J., 448, L105 (1995).CrossRefGoogle Scholar
  32. Martí J Ma, Mueller E, Font J A, Ibáñez J Ma and Marquina A, Morphology and Dynamics of Relativistic Jets, Astrophys. J., 479 151–163 (1997)CrossRefGoogle Scholar
  33. May M A , and White R H (1967). Stellar Dynamics and Gravitational Collapse. Math. Comp. Phys., 7, pp 219 - 258.Google Scholar
  34. Noh, W F, Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux, J. Comp. Phys., 72, pp 78–120 (1987).MATHCrossRefGoogle Scholar
  35. Norman M L and Winkler K-H A, Why Ultrarelativistic Hydrodynamics is difficult. Astrophysical Radiation Hydrodynamics, pp 449–476, ed. by M.L. Norman and K.H.A. Winkler (Reidel, 1986).CrossRefGoogle Scholar
  36. Pons J.A., Font J.A., Ibáñez J.Ma., Martí J.Ma., and Miralles J.A. (1998). General Relativistic Hydrodynamics with Special Relativistic Riemann Solvers. A&A, 339, pp 638 - 642.Google Scholar
  37. Quirk J, A Contribution to the Great Riemann Solver Debate, Intl. J. Numer. Meth. Fluids, 18, 555–574 (1994).MathSciNetMATHCrossRefGoogle Scholar
  38. Roe P L, Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, J. Comput. Phys., 43 357–372, (1981).MathSciNetMATHCrossRefGoogle Scholar
  39. Schneider V, Katscher V, Rischke D H, Waldhauser B, Marhun J A and Munz C D, New Algorithms for Ultra-relativistic Numerical Hydrodynamics, J. Comput. Phys., 105, 92–107, (1993).MathSciNetMATHCrossRefGoogle Scholar
  40. Shu C W and Osher S J, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II, J. Comput. Phys., 83, pp 32–78 (1989).MathSciNetMATHCrossRefGoogle Scholar
  41. Steger J and Warming R F, Flux Vector Splitting of the Inviscid Gasdynamics Equations with Application to Finite Difference Methods, J. Comput. Phys., v. 40, pp 263–293, (1981).MathSciNetMATHCrossRefGoogle Scholar
  42. Spencer R E and Newell S J, Vistas in Astronomy, 41, 1 (1997).CrossRefGoogle Scholar
  43. Clare R B and Strottman D, Phys. Reports, 141, 177 (1986).CrossRefGoogle Scholar
  44. Strottman D, in The Nuclear Equation of State, Part B,, ed. by Greiner W and Stöcker H, Plenum Press (1989).Google Scholar
  45. Van Leer B, Towards the Ultimate Difference Scheme V. A Second Order Sequel to Go-dunov’s Method, J. Comput. Phys., 32, pp 101–136, (1979).CrossRefGoogle Scholar
  46. Wen L, Panaitescu A and Laguna P, A shock-patching Code for Ultra-relativistic Fluid Flows, Astrophys. J., 486, p 919–927, (1997).CrossRefGoogle Scholar
  47. Wilson J R, Astrophys. J., 163, 209, (1971).CrossRefGoogle Scholar
  48. Wilson J R, Numerical Study of Fluid Flow in a Kerr Space, Astrophys. J., 173, 431–438,(1972).CrossRefGoogle Scholar
  49. Woodward P R and Colella P, The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks, J. Comput. Phys., 54 pp 115–173, (1984).MathSciNetMATHCrossRefGoogle Scholar
  50. Yee H C, VKI Lecture Notes in Computational Fluid Dynamics, von Karman Institute for Fluid Dynamics (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Antonio Marquina
    • 1
  1. 1.Departamento de Matemática AplicadaUniversity of ValènciaBurjassotSpain

Personalised recommendations