Riemann Solvers in General Relativistic Hydrodynamics

  • J. MA. Ibáñez
  • M. A. Aloy
  • J. A. Font
  • J. MA. Martí
  • J. A. Miralles
  • J. A. Pons

Abstract

Our contribution concerns with the numerical solution of the 3D general relativistic hydrodynamical system of equations within the framework of the{3+1} formalism. We summarize the theoretical ingredients which are necessary in order to build up a numerical scheme based on the solution of local Riemann problems. Hence, the full spectral decomposition of the Jacobian matrices of the system, i.e., the eigenvalues and the right and left eigenvectors, is explicitly shown. An alternative approach consists in using any of the special relativistic Riemann solvers recently developed for describing the evolution of special relativistic flows. Our proposal relies on a local change of coordinates in terms of which the spacetime metric is locally Minkowskian and permits an accurate description of numerical general relativistic hydrodynamics.

Keywords

Enthalpy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloy, M.A., Ibánez, J.Ma., Marti, J.Ma Gomez and Müller, E. (2000). Simulations of relativistic jets with GENESIS. This volume.Google Scholar
  2. Aloy, M.A., Pons, J.A., and Ibánez, J.Ma (1999). An Efficient Implementation of Flux Formulae in Multidimensional Relativistic Hydrodynamical Codes. Comp. Phys.Comm., 120, pp 115 - 121.MATHCrossRefGoogle Scholar
  3. Balsara, D.S. (1994). Riemann Solver for Relativistic Hydrodynamics. J. Comput. Phys.,114, pp 284– 297.MathSciNetMATHCrossRefGoogle Scholar
  4. Banyuls F., Font J.A., Ibáñez J.Ma Marti J.Maand MiraUes J.A. (1997). Numerical {3+1} General-Relativistic Hydrodynamics: A Local Characteristic Approach. ApJ,476, pp 221 - 233.CrossRefGoogle Scholar
  5. Donat, R., Font, J.A., Ibáñez, J.Maand Marquina, A. (1998). A Flux-Split Algorithm Applied to Relativistic Flows. J. Comput. Phys., 146, pp 58–81.MATHCrossRefGoogle Scholar
  6. Eulderink F., and Mellema G. (1995). General Relativistic Hydrodynamics with a Roe Solver. A&A SuppL, 110, pp 587 - 623.Google Scholar
  7. Font J.A., Ibáñez J.Ma Marquina A., and Marti J.Ma(1994). Multidimensional Relativistic Hydrodynamics: Characteristic Fields and High-Resolution Shock-Capturing Schemes. A&A, 282, pp 304 - 314.Google Scholar
  8. Font J.A., Ibáñez J.Maand Papadopoulos P. (2000). Numerical Simulations of Relativistic Accretion onto Black Holes using Godunov-type Methods. This volume.Google Scholar
  9. Font J.A., Miller M., Suen W.-M., and Tobias M. (2000). Three Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests. Phys. Rev. D, 61, pp 044011.1 - 044011.26.MathSciNetCrossRefGoogle Scholar
  10. Harten A., and Hyman J.M. (1983). Self-adjusting Grid Methods for One-dimensional Hyperbolic Conservation Laws. J. Comput. Phys., 50, pp 235 - 269.MathSciNetMATHCrossRefGoogle Scholar
  11. Koide S., Shibata K., and Kudoh T. (1999). Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General Relativistic Magnetohydrodynamic Numerical Code. ApJ, 522, pp 727 - 752.CrossRefGoogle Scholar
  12. Komissarov S. (2000). Relativistic MHD Simulations using Godunov-Type Methods. This volume.Google Scholar
  13. Martí J.Ma(1997). High-Order Finite-Difference Schemes. In: Relativistic Gravitation and Gravitational Radiation, pp 239 - 255. Marck J-A., and Lasota J-P., (Editors). Cambridge University Press.Google Scholar
  14. Martí J.MaIbáñez J.Maand Miralles J.A. (1991). Numerical Relativistic Hydrodynamics: Local Characteristic Approach Phys. Rev. D, 43, pp 3794 - 3801.CrossRefGoogle Scholar
  15. Martí J.Ma and Müller E. (1994). The Analytical Solution of the Riemann Problem in Relativistic Hydrodynamics. J. Fluid Mech., 258, pp 317 - 333.MathSciNetMATHCrossRefGoogle Scholar
  16. May M.A., and White R.H. (1967). Stellar Dynamics and Gravitational Collapse. Math. Comp. Phys., 7, pp 219 - 258.Google Scholar
  17. Norman M.L., and Winkler K-H.A. (1986). Why Ultrarelativistic Hydrodynamics is Difficult. In: Astrophysical Radiation Hydrodynamics, pp 449 - 476. Norman M.L., and Winkler K-H.A. (Editors). Reidel Publ.CrossRefGoogle Scholar
  18. Papadopoulos P., and Font J.A. (2000). Relativistic Hydrodynamics on Spacelike and Null Surfaces: Formalism and Computations of Spherically Symmetric Spacetimes. Phys. Rev. D, 61, pp 024015.1 - 024015.15.MathSciNetGoogle Scholar
  19. Pons J.A., Martí J.MSuperscript>aand Müller E. (2000). An Exact Riemann Solver for Multidimensional Special Relativistic Hydrodynamics. This volume.Google Scholar
  20. Pons J.A., Font J.A., Ibáñez J.MaMartí J.Maand Miralles J.A. (1998). General Relativistic Hydrodynamics with Special Relativistic Riemann Solvers. A&A, 339, pp 638 - 642.Google Scholar
  21. Romero J.V., Ibáñez J.Ma Martí J.Maand Miralles J.A. (1996). A New Spherically Symmetric General Relativistic Hydro dynamical Code. ApJ, 462, pp 839 - 854.CrossRefGoogle Scholar
  22. Schutz B.F. (1985). A First Course in General Relativity, pp 184. Cambridge University Press.Google Scholar
  23. Wilson J.R. (1972). Numerical Study of Fluid Flow in a Kerr Space. ApJ, 173, pp 431 -438.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • J. MA. Ibáñez
    • 1
  • M. A. Aloy
    • 1
  • J. A. Font
    • 2
  • J. MA. Martí
    • 1
  • J. A. Miralles
    • 1
  • J. A. Pons
    • 1
  1. 1.Departamento de Astronomía y AstrofísicaUVEGBurjassotSpain
  2. 2.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations